鹽城市重點中學2025屆高三第三次模擬考試數(shù)學試卷含解析_第1頁
鹽城市重點中學2025屆高三第三次模擬考試數(shù)學試卷含解析_第2頁
鹽城市重點中學2025屆高三第三次模擬考試數(shù)學試卷含解析_第3頁
鹽城市重點中學2025屆高三第三次模擬考試數(shù)學試卷含解析_第4頁
鹽城市重點中學2025屆高三第三次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

鹽城市重點中學2025屆高三第三次模擬考試數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,,,則邊上的高為()A. B.2 C. D.2.設命題:,,則為A., B.,C., D.,3.若集合,則()A. B.C. D.4.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.5.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.6.設過拋物線上任意一點(異于原點)的直線與拋物線交于兩點,直線與拋物線的另一個交點為,則()A. B. C. D.7.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.38.已知等比數(shù)列的前項和為,若,且公比為2,則與的關系正確的是()A. B.C. D.9.函數(shù)在上的大致圖象是()A. B.C. D.10.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.611.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當時,(其中e是自然對數(shù)的底數(shù)),若,則實數(shù)a的值為()A. B.3 C. D.12.已知函數(shù),其中,若恒成立,則函數(shù)的單調遞增區(qū)間為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中所有項的系數(shù)和為______,常數(shù)項為______.14.在的二項展開式中,x的系數(shù)為________.(用數(shù)值作答)15.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點F,若,則____.16.已知拋物線的焦點為,斜率為的直線過且與拋物線交于兩點,為坐標原點,若在第一象限,那么_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點,若點滿足.(Ⅰ)求點的軌跡方程;(Ⅱ)過點的直線與(Ⅰ)中曲線相交于兩點,為坐標原點,求△面積的最大值及此時直線的方程.18.(12分)曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)過原點且傾斜角為的射線與曲線分別交于兩點(異于原點),求的取值范圍.19.(12分)已知中,內角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設,求的取值范圍.20.(12分)如圖,在四棱錐中,底面是菱形,∠,是邊長為2的正三角形,,為線段的中點.(1)求證:平面平面;(2)若為線段上一點,當二面角的余弦值為時,求三棱錐的體積.21.(12分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.22.(10分)已知圓:和拋物線:,為坐標原點.(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線于兩點,若直線的斜率為,求點的坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

結合正弦定理、三角形的內角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角形的內角和定理、兩角和的正弦公式,屬于中檔題.2、D【解析】

直接利用全稱命題的否定是特稱命題寫出結果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.3、A【解析】

先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關鍵.4、A【解析】

根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設,則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應用,關鍵是要找到一組合適的基底表示向量,是基礎題.5、B【解析】

由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數(shù)量積,點到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.6、C【解析】

畫出圖形,將三角形面積比轉為線段長度比,進而轉為坐標的表達式。寫出直線方程,再聯(lián)立方程組,求得交點坐標,最后代入坐標,求得三角形面積比.【詳解】作圖,設與的夾角為,則中邊上的高與中邊上的高之比為,,設,則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點睛】解決本題主要在于將面積比轉化為線段長的比例關系,進而聯(lián)立方程組求解,是一道不錯的綜合題.7、A【解析】

由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.8、C【解析】

在等比數(shù)列中,由即可表示之間的關系.【詳解】由題可知,等比數(shù)列中,且公比為2,故故選:C【點睛】本題考查等比數(shù)列求和公式的應用,屬于基礎題.9、D【解析】

討論的取值范圍,然后對函數(shù)進行求導,利用導數(shù)的幾何意義即可判斷.【詳解】當時,,則,所以函數(shù)在上單調遞增,令,則,根據(jù)三角函數(shù)的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數(shù)在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導數(shù)與函數(shù)單調性的關系以及導數(shù)的幾何意義,屬于中檔題.10、B【解析】

先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.11、B【解析】

根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個以4為周期的周期函數(shù),所以,解得,故選:B.【點睛】本題考查函數(shù)周期的求解,涉及對數(shù)運算,屬綜合基礎題.12、A【解析】

,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數(shù)的單調區(qū)間,涉及到恒成立問題,考查學生轉化與化歸的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、3-260【解析】

(1)令求得所有項的系數(shù)和;(2)先求出展開式中的常數(shù)項與含的系數(shù),再求展開式中的常數(shù)項.【詳解】將代入,得所有項的系數(shù)和為3.因為的展開式中含的項為,的展開式中含常數(shù)項,所以的展開式中的常數(shù)項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎題.14、-40【解析】

由題意,可先由公式得出二項展開式的通項,再令10-3r=1,得r=3即可得出x項的系數(shù)【詳解】的二項展開式的通項公式為,r=0,1,2,3,4,5,令,所以的二項展開式中x項的系數(shù)為.故答案為:-40.【點睛】本題考查二項式定理的應用,解題關鍵是靈活掌握二項式展開式通項的公式,屬于基礎題.15、【解析】

過點做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點睛】本題主要考查平面向量的線性運算和平面向量的數(shù)量積,由題意作出是解題的關鍵.16、2【解析】

如圖所示,先證明,再利用拋物線的定義和相似得到.【詳解】由題得,.因為.所以,過點A、B分別作準線的垂線,垂足分別為M,N,過點B作于點E,設|BF|=m,|AF|=n,則|BN|=m,|AM|=n,所以|AE|=n-m,因為,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案為:2【點睛】本題主要考查直線和拋物線的位置關系,考查拋物線的定義,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)面積的最大值為,此時直線的方程為.【解析】

(1)根據(jù)橢圓的定義求解軌跡方程;(2)設出直線方程后,采用(表示原點到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:(Ⅰ)由定義法可得,點的軌跡為橢圓且,.因此橢圓的方程為.(Ⅱ)設直線的方程為與橢圓交于點,,聯(lián)立直線與橢圓的方程消去可得,即,.面積可表示為令,則,上式可化為,當且僅當,即時等號成立,因此面積的最大值為,此時直線的方程為.【點睛】常見的利用定義法求解曲線的軌跡方程問題:(1)已知點,若點滿足且,則的軌跡是橢圓;(2)已知點,若點滿足且,則的軌跡是雙曲線.18、(1),;(2).【解析】

(1)先將曲線化為普通方程,再由直角坐標系與極坐標系之間的轉化關系:,可得極坐標方程和曲線的直角坐標方程;(2)由已知可得出射線的極坐標方程為,聯(lián)立和的極坐標方程可得點A和點B的極坐標,從而得出,由的范圍可求得的取值范圍.【詳解】(1)曲線的普通方程為,即,其極坐標方程為;曲線的極坐標方程為,即,其直角坐標方程為;(2)射線的極坐標方程為,聯(lián)立,聯(lián)立,的取值范圍是【點睛】本題考查圓的參數(shù)方程與普通方程互化,圓,拋物線的極坐標方程與普通方程的互化,以及在極坐標下的直線與圓和拋物線的位置關系,屬于中檔題.19、(1);(2).【解析】

(1)由正弦定理直接可求,然后運用兩角和的正弦公式算出;(2)化簡,由余弦定理得,利用基本不等式求出,確定角范圍,進而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)【點睛】本題主要考查了正余弦定理的應用,基本不等式的應用,三角函數(shù)的值域等,考查了學生運算求解能力.20、(1)見解析;(2).【解析】

(1)先證明,可證平面,再由可證平面,即得證;(2)以為坐標原點,建立如圖所示空間直角坐標系,設,求解面的法向量,面的法向量,利用二面角的余弦值為,可求解,轉化即得解.【詳解】(1)證明:因為是正三角形,為線段的中點,所以.因為是菱形,所以.因為,所以是正三角形,所以,所以平面.又,所以平面.因為平面,所以平面平面.(2)由(1)知平面,所以,.而,所以,.又,所以平面.以為坐標原點,建立如圖所示空間直角坐標系.則.于是,,.設面的一個法向量,由得令,則,即.設,易得,.設面的一個法向量,由得令,則,,即.依題意,即,令,則,即,即.所以.【點睛】本題考查了空間向量和立體幾何綜合,考查了面面垂直的判斷,二面角的向量求解,三棱錐的體積等知識點,考查了學生空間想象,邏輯推理,數(shù)學運算的能力,屬于中檔題.21、(1)見解析(2)【解析】

(1)利用正弦定理求得,由此得到,結合證得平面,由此證得.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值,再轉化為正弦值.【詳解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以為坐標原點建立如圖所示的空間直角坐標系,,設平面的法向量為,由可得:,令,則,設平面的法向量為,由可得:,令,則,設二面角的平面角為,由圖可知為鈍角,則,,故二面角的正弦值為.【點睛】本小題主要考查線線垂直的證明,考查空間向量法求二面角,考查空間想象能力和邏輯推理能力,屬于中檔題.22、(1);(2)或.【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論