版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第08講函數(shù)的單調(diào)性【基礎(chǔ)知識(shí)全通關(guān)】1.函數(shù)單調(diào)性的定義增函數(shù)減函數(shù)定義一般地,設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,如果對(duì)于定義域SKIPIF1<0內(nèi)某個(gè)區(qū)間SKIPIF1<0上的任意兩個(gè)自變量的值SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),都有SKIPIF1<0,那么就說(shuō)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù)當(dāng)SKIPIF1<0時(shí),都有SKIPIF1<0,那么就說(shuō)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù)圖象描述自左向右看,圖象是上升的自左向右看,圖象是下降的設(shè)SKIPIF1<0,SKIPIF1<0.若有SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0在閉區(qū)間SKIPIF1<0上是增函數(shù);若有SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0在閉區(qū)間SKIPIF1<0上是減函數(shù).此為函數(shù)單調(diào)性定義的等價(jià)形式.2.單調(diào)區(qū)間的定義若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù)或減函數(shù),則稱函數(shù)SKIPIF1<0在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,區(qū)間SKIPIF1<0叫做函數(shù)SKIPIF1<0的單調(diào)區(qū)間.注意:(1)單調(diào)性是與“區(qū)間”緊密相關(guān)的概念,一個(gè)函數(shù)在不同的區(qū)間上,可以有不同的單調(diào)性,同一種單調(diào)區(qū)間用“和”或“,”連接,不能用“∪”連接.(2)函數(shù)的單調(diào)性只能在函數(shù)的定義域內(nèi)來(lái)討論,所以求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域.(3)“函數(shù)的單調(diào)區(qū)間是SKIPIF1<0”與“函數(shù)在區(qū)間SKIPIF1<0上單調(diào)”是兩個(gè)不同的概念,注意區(qū)分,顯然SKIPIF1<0.(4)函數(shù)的單調(diào)性是對(duì)某個(gè)區(qū)間而言的,所以要受到區(qū)間的限制.例如函數(shù)SKIPIF1<0分別在(-∞,0),(0,+∞)內(nèi)都是單調(diào)遞減的,但不能說(shuō)它在整個(gè)定義域,即(-∞,0)∪(0,+∞)內(nèi)單調(diào)遞減,只能分開(kāi)寫,即函數(shù)的單調(diào)減區(qū)間為(-∞,0)和(0,+∞).3.函數(shù)單調(diào)性的常用結(jié)論(1)若SKIPIF1<0均為區(qū)間A上的增(減)函數(shù),則SKIPIF1<0也是區(qū)間A上的增(減)函數(shù);(2)若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的單調(diào)性相同;若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的單調(diào)性相反;(3)函數(shù)SKIPIF1<0在公共定義域內(nèi)與SKIPIF1<0,SKIPIF1<0的單調(diào)性相反;(4)函數(shù)SKIPIF1<0在公共定義域內(nèi)與SKIPIF1<0的單調(diào)性相同;(5)奇函數(shù)在其關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相同,偶函數(shù)在其關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相反;(6)一些重要函數(shù)的單調(diào)性:①SKIPIF1<0的單調(diào)性:在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減;②SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的單調(diào)性:在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減.4.函數(shù)的最值前提設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,如果存在實(shí)數(shù)SKIPIF1<0滿足條件(1)對(duì)于任意的SKIPIF1<0,都有SKIPIF1<0;(2)存在SKIPIF1<0,使得SKIPIF1<0(3)對(duì)于任意的SKIPIF1<0,都有SKIPIF1<0;(4)存在SKIPIF1<0,使得SKIPIF1<0結(jié)論SKIPIF1<0為最大值SKIPIF1<0為最小值注意:(1)函數(shù)的值域一定存在,而函數(shù)的最值不一定存在;若函數(shù)的最值存在,則一定是值域中的元素;若函數(shù)的值域是開(kāi)區(qū)間,則函數(shù)無(wú)最值,若函數(shù)的值域是閉區(qū)間,則閉區(qū)間的端點(diǎn)值就是函數(shù)的最值.5、判斷函數(shù)的單調(diào)性1.判斷函數(shù)單調(diào)性的方法:(1)定義法,步驟為:取值,作差,變形,定號(hào),判斷.利用此方法證明抽象函數(shù)的單調(diào)性時(shí),應(yīng)根據(jù)所給抽象關(guān)系式的特點(diǎn),對(duì)SKIPIF1<0或SKIPIF1<0進(jìn)行適當(dāng)變形,進(jìn)而比較出SKIPIF1<0與SKIPIF1<0的大?。?)利用復(fù)合函數(shù)關(guān)系,若兩個(gè)簡(jiǎn)單函數(shù)的單調(diào)性相同,則這兩個(gè)函數(shù)的復(fù)合函數(shù)為增函數(shù);若兩個(gè)簡(jiǎn)單函數(shù)的單調(diào)性相反,則這兩個(gè)函數(shù)的復(fù)合函數(shù)為減函數(shù),簡(jiǎn)稱“同增異減”.(3)圖象法:從左往右看,圖象逐漸上升,則單調(diào)遞增;圖象逐漸下降,則單調(diào)遞減.(4)導(dǎo)數(shù)法:利用導(dǎo)函數(shù)的正負(fù)判斷函數(shù)的單調(diào)性.(5)利用已知函數(shù)的單調(diào)性,即轉(zhuǎn)化為已知函數(shù)的和、差或復(fù)合函數(shù),判斷函數(shù)的單調(diào)性.2.在利用函數(shù)的單調(diào)性寫出函數(shù)的單調(diào)區(qū)間時(shí),首先應(yīng)注意函數(shù)的單調(diào)區(qū)間應(yīng)是函數(shù)定義域的子集或真子集,求函數(shù)的單調(diào)區(qū)間必須先確定函數(shù)的定義域;其次需掌握一次函數(shù)、二次函數(shù)等基本初等函數(shù)的單調(diào)區(qū)間.6、函數(shù)單調(diào)性的應(yīng)用函數(shù)單調(diào)性的應(yīng)用主要有:(1)由SKIPIF1<0的大小關(guān)系可以判斷SKIPIF1<0與SKIPIF1<0的大小關(guān)系,也可以由SKIPIF1<0與SKIPIF1<0的大小關(guān)系判斷出SKIPIF1<0的大小關(guān)系.比較函數(shù)值的大小時(shí),若自變量的值不在同一個(gè)單調(diào)區(qū)間內(nèi),要利用其函數(shù)性質(zhì)轉(zhuǎn)化到同一個(gè)單調(diào)區(qū)間上進(jìn)行比較.(2)利用函數(shù)的單調(diào)性,求函數(shù)的最大值和最小值.(3)利用函數(shù)的單調(diào)性,求參數(shù)的取值范圍,此時(shí)應(yīng)將參數(shù)視為已知數(shù),依據(jù)函數(shù)的單調(diào)性,確定函數(shù)的單調(diào)區(qū)間,再與已知單調(diào)區(qū)間比較,即可求出參數(shù)的取值范圍.若函數(shù)為分段函數(shù),除注意各段的單調(diào)性外,還要注意銜接點(diǎn)的取值.(4)利用函數(shù)的單調(diào)性解不等式.首先根據(jù)函數(shù)的性質(zhì)把不等式轉(zhuǎn)化為SKIPIF1<0的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“f”號(hào),轉(zhuǎn)化為具體的不等式(組),此時(shí)要注意SKIPIF1<0與SKIPIF1<0的取值應(yīng)在外層函數(shù)的定義域內(nèi).7、函數(shù)最值的求解1.利用單調(diào)性求最值.應(yīng)先確定函數(shù)的單調(diào)性,然后再由單調(diào)性求出最值.若函數(shù)在閉區(qū)間SKIPIF1<0上是增函數(shù),則SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0,最大值為SKIPIF1<0;若函數(shù)在閉區(qū)間SKIPIF1<0上是減函數(shù),則SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0,最大值為SKIPIF1<0.2.求函數(shù)的最值實(shí)質(zhì)上是求函數(shù)的值域,因此求函數(shù)值域的方法也用來(lái)求函數(shù)最值.3.由于分段函數(shù)在定義域不同的子區(qū)間上對(duì)應(yīng)不同的解析式,因此應(yīng)先求出分段函數(shù)在每一個(gè)子區(qū)間上的最值,然后取各區(qū)間上最大值中的最大者作為分段函數(shù)的最大值,各區(qū)間上最小值中的最小者作為分段函數(shù)的最小值.4.求函數(shù)最值的方法還有數(shù)形結(jié)合法和導(dǎo)數(shù)法.【知識(shí)拓展】1.函數(shù)y=f(x)(f(x)>0)在公共定義域內(nèi)與y=-f(x),y=eq\f(1,f(x))的單調(diào)性相反.2.“對(duì)勾函數(shù)”y=x+eq\f(a,x)(a>0)的單調(diào)增區(qū)間為(-∞,-eq\r(a)),(eq\r(a),+∞);單調(diào)減區(qū)間是[-eq\r(a),0),(0,eq\r(a)].【考點(diǎn)研習(xí)一點(diǎn)通】考點(diǎn)01單調(diào)性的判定和證明1、下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.【答案】C【解析】對(duì)于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對(duì)于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.2.已知函數(shù)f(x)=SKIPIF1<0,證明函數(shù)在(-2,+∞)上單調(diào)遞增.【答案】證明見(jiàn)解析.【解析】?x1,x2∈(-2,+∞),利用作差法和0比可得函數(shù)值大小進(jìn)而可證得.【詳解】證明:?x1,x2∈(-2,+∞),且x1>x2>-2,f(x)=SKIPIF1<0則f(x1)-f(x2)=SKIPIF1<0SKIPIF1<0=SKIPIF1<0,因?yàn)閤1>x2>-2,所以x1-x2>0,x1+2>0,x2+2>0,所以SKIPIF1<0>0,所以f(x1)>f(x2),所以f(x)在(-2,+∞)上單調(diào)遞增.考點(diǎn)02:求函數(shù)的單調(diào)區(qū)間3.函數(shù)f(x)=SKIPIF1<0在()A.(-∞,1)∪(1,+∞)上單調(diào)遞增B.(-∞,1)∪(1,+∞)上單調(diào)遞減C.(-∞,1)和(1,+∞)上單調(diào)遞增D.(-∞,1)和(1,+∞)上單調(diào)遞減【答案】C【解析】分離函數(shù)得f(x)=SKIPIF1<0-1,結(jié)合函數(shù)y=-SKIPIF1<0在(-∞,0)和(0,+∞)上單調(diào)遞增,由平移即可判斷.【詳解】f(x)的定義域?yàn)閧x|x≠1}.f(x)=SKIPIF1<0=SKIPIF1<0-1=SKIPIF1<0-1,因?yàn)楹瘮?shù)y=-SKIPIF1<0在(-∞,0)和(0,+∞)上單調(diào)遞增,由平移關(guān)系得,f(x)在(-∞,1)和(1,+∞)上單調(diào)遞增.故選:C.4、函數(shù)f(x)=xA.(?∞,?2]B.(?∞,1]C.[1,+∞)D.[4,+∞)【答案】D【解析】x2?2x?8≥0得x≥4或令x2?2x?8=t,則∴t=x2?2x?8∴原函數(shù)的單調(diào)遞增區(qū)間為[4,+∞),故選D.考點(diǎn)03:利用單調(diào)性比較大小5.設(shè)函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0有SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】根據(jù)題意,得到函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且為定義在SKIPIF1<0上的偶函數(shù),結(jié)合函數(shù)的單調(diào)性與奇偶性,即可求解.【詳解】由題意知SKIPIF1<0,都有SKIPIF1<0,可得函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又由函數(shù)SKIPIF1<0滿足SKIPIF1<0,可得SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故選:C.6、定義在實(shí)數(shù)集SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是增函數(shù),則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系正確的是().A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,又SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0是增函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故選:C.考點(diǎn)04:利用單調(diào)性確定參數(shù)取值范圍7.若函數(shù)是上的增函數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.【答案】B【解析】由函數(shù)是上的增函數(shù),則,解得,即實(shí)數(shù)的取值范圍是,故選:B.8.【多選題】(2021·湖南長(zhǎng)沙市·長(zhǎng)沙一中高二月考)已知函數(shù)SKIPIF1<0,若對(duì)任意的SKIPIF1<0[t,t+1],不等式SKIPIF1<0恒成立,則整數(shù)t的取值可以是()A.SKIPIF1<0 B.1 C.3 D.5【答案】CD【解析】首先判斷SKIPIF1<0在SKIPIF1<0上為增函數(shù),將不等式轉(zhuǎn)化為SKIPIF1<0,即SKIPIF1<0對(duì)任意的SKIPIF1<0[t,t+1]恒成立,利用一次函數(shù)的單調(diào)性,解不等式可得所求范圍.【詳解】SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,在SKIPIF1<0遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,在SKIPIF1<0上遞增,且SKIPIF1<0,SKIPIF1<0為連續(xù)函數(shù),所以SKIPIF1<0在SKIPIF1<0上為增函數(shù),且SKIPIF1<0,由對(duì)任意的SKIPIF1<0[t,t+1],不等式SKIPIF1<0恒成立,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0對(duì)任意的SKIPIF1<0[t,t+1]恒成立,由SKIPIF1<0在[t,t+1]上遞增,可得SKIPIF1<0的最大值為SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:CD考點(diǎn)05:利用函數(shù)的單調(diào)性解決不等式問(wèn)題9.【多選題】已知函數(shù)SKIPIF1<0,則下列x的范圍滿足不等式SKIPIF1<0的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【解析】畫出函數(shù)SKIPIF1<0的圖象,由圖象可知函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),再利用函數(shù)SKIPIF1<0的單調(diào)性簡(jiǎn)化不等式,即可得到結(jié)果.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0,畫出函數(shù)圖象如圖所示:所以函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0,故選:BCD.10、若定義在SKIPIF1<0的奇函數(shù)f(x)在SKIPIF1<0單調(diào)遞減,且f(2)=0,則滿足SKIPIF1<0的x的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】首先根據(jù)函數(shù)奇偶性與單調(diào)性,得到函數(shù)SKIPIF1<0在相應(yīng)區(qū)間上的符號(hào),再根據(jù)兩個(gè)數(shù)的乘積大于等于零,分類轉(zhuǎn)化為對(duì)應(yīng)自變量不等式,最后求并集得結(jié)果.【詳解】因?yàn)槎x在SKIPIF1<0上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上也是單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以由SKIPIF1<0可得:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,所以滿足SKIPIF1<0的SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D.考點(diǎn)06:函數(shù)的單調(diào)性和最值(值域)問(wèn)題11.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的值域?yàn)镾KIPIF1<0,則SKIPIF1<0()A.有最大值,但無(wú)最小值 B.既有最大值,也有最小值C.無(wú)最大值,但有最小值 D.既無(wú)最大值,也無(wú)最小值【答案】A【解析】取SKIPIF1<0,判斷SKIPIF1<0無(wú)最小值;由于SKIPIF1<0,故結(jié)合題意得SKIPIF1<0,進(jìn)而得答案.【詳解】解:SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,由于函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的值域?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0無(wú)最小值;因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,由于拋物線開(kāi)口向上,故SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取得最大值SKIPIF1<0.故選:A.12.已知SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,則SKIPIF1<0的最小值是_____.【答案】SKIPIF1<0【解析】按SKIPIF1<0的正負(fù)分類討論確定SKIPIF1<0的關(guān)系,從而可把SKIPIF1<0化為SKIPIF1<0的函數(shù),再由基本不等式求得最小值.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0恒成立,SKIPIF1<0是SKIPIF1<0上的增函數(shù),∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0恒成立,SKIPIF1<0是SKIPIF1<0上的增函數(shù),∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)等號(hào)成立.故答案為:SKIPIF1<0.考點(diǎn)07:抽象函數(shù)的單調(diào)性問(wèn)題13.(2021·海南高三其他模擬)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則關(guān)于SKIPIF1<0的不等式SKIPIF1<0(其中SKIPIF1<0)的解集為()A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】A【解析】先判斷函數(shù)SKIPIF1<0單調(diào)遞減,再利用已知條件和函數(shù)的單調(diào)性得SKIPIF1<0,解不等式即得解.【詳解】任取SKIPIF1<0,由已知得SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0單調(diào)遞減.由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,此時(shí)原不等式解集為SKIPIF1<0.故選:A14.設(shè)f(x)是定義在R上的函數(shù),對(duì)m,n∈R,恒有f(m+n)=f(m)·f(n)(f(m)≠0,f(n)≠0),且當(dāng)x>0時(shí),0<f(x)<1.求證:(1)f(0)=1;(2)x∈R時(shí),恒有f(x)>0;(3)f(x)在R上是減函數(shù).【答案】見(jiàn)解析【解析】分析:(1)可通過(guò)賦值求f(0);(2)可通過(guò)f(0)=f[x+(-x)]=f(x)·f(-x)證明f(x)>0;(3)利用定義可證明函數(shù)的單調(diào)性.解:(1)根據(jù)題意,令m=0,可得f(0+n)=f(0)·f(n),∵f(n)≠0,∴f(0)=1.(2)由題意知x>0時(shí),0<f(x)<1;當(dāng)x=0時(shí),f(0)=1>0;當(dāng)x<0時(shí),-x>0,∴0<f(-x)<1.∵f[x+(-x)]=f(x)·f(-x),∴f(x)·f(-x)=1,∴f(x)=eq\f(1,f-x)>0.故x∈R時(shí),恒有f(x)>0.(3)設(shè)x1,x2∈R,且x1<x2,則f(x2)=f[x1+(x2-x1)],∴f(x2)-f(x1)=f[x1+(x2-x1)]-f(x1)=f(x1)·f(x2-x1)-f(x1)=f(x1)[f(x2-x1)-1].由(2)知f(x1)>0,又x2-x1>0,∴0<f(x2-x1)<1,故f(x2)-f(x1)<0,∴f(x)在R上是減函數(shù).【考點(diǎn)易錯(cuò)】易錯(cuò)01函數(shù)的單調(diào)性1、下列函數(shù)定義域?yàn)镾KIPIF1<0且在定義域內(nèi)單調(diào)遞增的是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】根據(jù)題意,依次分析選項(xiàng):對(duì)于A,SKIPIF1<0,為指數(shù)函數(shù),其定義域?yàn)镽,不符合題意;對(duì)于B,SKIPIF1<0,為對(duì)數(shù)函數(shù),定義域?yàn)镾KIPIF1<0且在定義域內(nèi)單調(diào)遞增,符合題意;對(duì)于C,SKIPIF1<0,其定義域?yàn)镾KIPIF1<0,不符合題意;對(duì)于D,SKIPIF1<0,為對(duì)數(shù)函數(shù),定義域?yàn)镾KIPIF1<0且在定義域內(nèi)單調(diào)遞減,不符合題意,故選B.【名師點(diǎn)睛】本題考查函數(shù)的定義域以及單調(diào)性的判定,涉及指數(shù)、對(duì)數(shù)、冪函數(shù)的性質(zhì),屬于基礎(chǔ)題.根據(jù)題意,依次分析選項(xiàng)中函數(shù)的定義域以及單調(diào)性,即可得答案.易錯(cuò)02單調(diào)性的證明2、已知函數(shù)SKIPIF1<0SKIPIF1<0,且SKIPIF1<0.(1)判斷函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性,并用定義法證明;(2)若SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)見(jiàn)解析;(2)SKIPIF1<0.【解析】(1)由已知得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0SKIPIF1<0SKIPIF1<0.任取SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,∴函數(shù)SKIPIF1<0在SKIPIF1<0上為單調(diào)增函數(shù).(2)∵SKIPIF1<0,且由(1)知函數(shù)SKIPIF1<0在SKIPIF1<0上為單調(diào)增函數(shù),∴SKIPIF1<0即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0(不寫集合形式不扣分).【名師點(diǎn)睛】本題主要考查函數(shù)的單調(diào)性的定義和證明方法,屬于基礎(chǔ)題.求解時(shí),(1)由SKIPIF1<0,代入解析式即可得SKIPIF1<0,進(jìn)而得SKIPIF1<0,從而可利用單調(diào)性定義證明即可;(2)由(1)知函數(shù)SKIPIF1<0在SKIPIF1<0上為單調(diào)增函數(shù),所以得SKIPIF1<0,求解不等式即可.用定義法證明函數(shù)的單調(diào)性的步驟:①取值;②作差;③變形;④確定符號(hào);⑤下結(jié)論.關(guān)鍵是第三步的變形,一定要化為幾個(gè)因式乘積的形式.3、定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:對(duì)任意的SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),有SKIPIF1<0,則A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】因?yàn)閷?duì)任意的SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),有SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故選D.4、已知函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,如果對(duì)于SKIPIF1<0,都有SKIPIF1<0.(1)求SKIPIF1<0的值;(2)解不等式SKIPIF1<0.【解析】(1)令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.(2)解法一:由題意知SKIPIF1<0為SKIPIF1<0上的減函數(shù),且SKIPIF1<0,即SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0可化為SKIPIF1<0,即SKIPIF1<0=SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.∴不等式SKIPIF1<0的解集為SKIPIF1<0.解法二:由SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.∴不等式SKIPIF1<0的解集為SKIPIF1<0.易錯(cuò)03利用單調(diào)性求最值5、已知函數(shù)SKIPIF1<0,若在區(qū)間SKIPIF1<0上,不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【解析】要使在區(qū)間SKIPIF1<0上,不等式SKIPIF1<0恒成立,只需SKIPIF1<0恒成立,設(shè)SKIPIF1<0,只需SKIPIF1<0小于SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值,因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.6、已知函數(shù)SKIPIF1<0,若x∈[t,t+2],求函數(shù)f(x)的最值.【解析】易知函數(shù)SKIPIF1<0的圖象的對(duì)稱軸為直線x=1,(1)當(dāng)1≥t+2,即SKIPIF1<0時(shí),f(x)max=f(t)=t2-2t-3,f(x)min=f(t+2)=t2+2t-3.(2)當(dāng)SKIPIF1<0≤1<t+2,即-1<t≤0時(shí),f(x)max=f(t)=t2-2t-3,f(x)min=f(1)=-4.(3)當(dāng)t≤1<SKIPIF1<0,即0<t≤1時(shí),f(x)max=f(t+2)=t2+2t-3,f(x)min=f(1)=-4.(4)當(dāng)1<t,即t>1時(shí),f(x)max=f(t+2)=t2+2t-3,f(x)min=f(t)=t2-2t-3.設(shè)函數(shù)f(x)的最大值為g(t),最小值為φ(t),則有SKIPIF1<0,SKIPIF1<0.【名師點(diǎn)睛】求二次函數(shù)的最大(?。┲涤袃煞N類型:一是函數(shù)定義域?yàn)閷?shí)數(shù)集SKIPIF1<0,這時(shí)只要根據(jù)拋物線的開(kāi)口方向,應(yīng)用配方法即可求出最大(小)值;二是函數(shù)定義域?yàn)槟骋粎^(qū)間,這時(shí)二次函數(shù)的最大(?。┲涤伤膯握{(diào)性確定,而它的單調(diào)性又由拋物線的開(kāi)口方向和對(duì)稱軸的位置(在區(qū)間上,在區(qū)間左側(cè),還是在區(qū)間右側(cè))來(lái)決定,若含有參數(shù),則要根據(jù)對(duì)稱軸與SKIPIF1<0軸的交點(diǎn)與區(qū)間的位置關(guān)系對(duì)參數(shù)進(jìn)行分類討論,解題時(shí)要注意數(shù)形結(jié)合.易錯(cuò)04:抽象函數(shù)的單調(diào)性問(wèn)題7.(2020·上海高三專題練習(xí))函數(shù)的定義域?yàn)?,并滿足以下條件:①對(duì)任意,有;②對(duì)任意,有;③.(Ⅰ)求的值;(Ⅱ)求證:在上是單調(diào)增函數(shù);(Ⅲ)若,且,求證:.【答案】(1);(2)見(jiàn)解析;(3)見(jiàn)解析.【解析】解法一:(Ⅰ)令得:因?yàn)?,所以;(Ⅱ)任取且設(shè)則因?yàn)?,所以,所以在上是單調(diào)增函數(shù);(Ⅲ)由(Ⅰ)(Ⅱ)知,因?yàn)橛?,所以所以解法二?Ⅰ)因?yàn)閷?duì)任意,有,且對(duì)任意,所以,當(dāng)時(shí)故.(Ⅱ)因?yàn)?,所以所以在上是單調(diào)增函數(shù),即在上是單調(diào)增函數(shù)(Ⅲ)由(Ⅱ)知,,而,所以所以8.函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),對(duì)任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,且f(4)=5.(1)求f(2)的值;(2)解不等式f(m-2)≥3.【答案】(1)3.(2)(2,4].【解析】(1)f(4)=f(2+2)=f(2)+f(2)-1,又f(4)=5,∴f(2)=3.(2)f(m-2)≥f(2),∴eq\b\lc\{\rc\(\a\vs4\al\co1(m-2≤2,m-2>0)),∴2<m≤4.∴m的范圍為(2,4].【鞏固提升】1.【多選題】(2021·全國(guó)高一課時(shí)練習(xí))設(shè)函數(shù)f(x)在R上為增函數(shù),則下列結(jié)論不一定正確的是()A.y=SKIPIF1<0在R上為減函數(shù) B.y=|f(x)|在R上為增函數(shù)C.y=SKIPIF1<0SKIPIF1<0在R上為增函數(shù) D.y=SKIPIF1<0f(x)在R上為減函數(shù)【答案】ABC【解析】令SKIPIF1<0可判斷出ABC不正確,利用單調(diào)函數(shù)的定義判斷可得結(jié)果.【詳解】對(duì)于A,若f(x)=x,則y=SKIPIF1<0=SKIPIF1<0,在R上不是減函數(shù),A錯(cuò)誤;對(duì)于B,若f(x)=x,則y=|f(x)|=|x|,在R上不是增函數(shù),B錯(cuò)誤;對(duì)于C,若f(x)=x,則y=SKIPIF1<0SKIPIF1<0=SKIPIF1<0SKIPIF1<0,在R上不是增函數(shù),C錯(cuò)誤;對(duì)于D,函數(shù)f(x)在R上為增函數(shù),則對(duì)于任意的x1,x2∈R,設(shè)x1<x2,必有f(x1)<f(x2),對(duì)于y=SKIPIF1<0f(x),則有y1-y2=[SKIPIF1<0f(x1)]SKIPIF1<0[SKIPIF1<0f(x2)]=f(x2)SKIPIF1<0f(x1)>0,則y=SKIPIF1<0f(x)在R上為減函數(shù),D正確.故選:ABC2.已知fx=1+2x?xA.在區(qū)間?2,1上單調(diào)遞增B.在0,2上單調(diào)遞增C.在?1,1上單調(diào)遞增D.在1,2上單調(diào)遞增【答案】D【解析】fx記t=fx當(dāng)x∈?2,1時(shí),而y=ft在當(dāng)x∈0,2時(shí),當(dāng)x∈?1,1時(shí),而y=ft在當(dāng)x∈1,2時(shí),f而y=ft在故選:D3.下列函數(shù)中是增函數(shù)的為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)基本初等函數(shù)的性質(zhì)逐項(xiàng)判斷后可得正確的選項(xiàng).【詳解】對(duì)于A,SKIPIF1<0為SKIPIF1<0上的減函數(shù),不合題意,舍.對(duì)于B,SKIPIF1<0為SKIPIF1<0上的減函數(shù),不合題意,舍.對(duì)于C,SKIPIF1<0在SKIPIF1<0為減函數(shù),不合題意,舍.對(duì)于D,SKIPIF1<0為SKIPIF1<0上的增函數(shù),符合題意,故選:D.4.設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0()A.是奇函數(shù),且在(0,+∞)單調(diào)遞增 B.是奇函數(shù),且在(0,+∞)單調(diào)遞減C.是偶函數(shù),且在(0,+∞)單調(diào)遞增 D.是偶函數(shù),且在(0,+∞)單調(diào)遞減【答案】A【分析】根據(jù)函數(shù)的解析式可知函數(shù)的定義域?yàn)镾KIPIF1<0,利用定義可得出函數(shù)SKIPIF1<0為奇函數(shù),再根據(jù)函數(shù)的單調(diào)性法則,即可解出.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0定義域?yàn)镾KIPIF1<0,其關(guān)于原點(diǎn)對(duì)稱,而SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù).又因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞減,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞增.故選:A.【點(diǎn)睛】本題主要考查利用函數(shù)的解析式研究函數(shù)的性質(zhì),屬于基礎(chǔ)題.5.下列函數(shù)中,在區(qū)間(0,+SKIPIF1<0)上單調(diào)遞增的是A.SKIPIF1<0 B.y=SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由題意結(jié)合函數(shù)的解析式考查函數(shù)的單調(diào)性即可.【詳解】函數(shù)SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,故選A.【點(diǎn)睛】本題考查簡(jiǎn)單的指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性,注重對(duì)重要知識(shí)、基礎(chǔ)知識(shí)的考查,蘊(yùn)含數(shù)形結(jié)合思想,屬于容易題.6.設(shè)SKIPIF1<0是定義域?yàn)镾KIPIF1<0的偶函數(shù),且在SKIPIF1<0單調(diào)遞減,則A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【分析】由已知函數(shù)為偶函數(shù),把SKIPIF1<0,轉(zhuǎn)化為同一個(gè)單調(diào)區(qū)間上,再比較大?。驹斀狻縎KIPIF1<0是R的偶函數(shù),SKIPIF1<0.SKIPIF1<0,又SKIPIF1<0在(0,+∞)單調(diào)遞減,∴SKIPIF1<0,SKIPIF1<0,故選C.【點(diǎn)睛】本題主要考查函數(shù)的奇偶性、單調(diào)性,解題關(guān)鍵在于利用中間量大小比較同一區(qū)間的取值.7.若定義在SKIPIF1<0的奇函數(shù)f(x)在SKIPIF1<0單調(diào)遞減,且f(2)=0,則滿足SKIPIF1<0的x的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】首先根據(jù)函數(shù)奇偶性與單調(diào)性,得到函數(shù)SKIPIF1<0在相應(yīng)區(qū)間上的符號(hào),再根據(jù)兩個(gè)數(shù)的乘積大于等于零,分類轉(zhuǎn)化為對(duì)應(yīng)自變量不等式,最后求并集得結(jié)果.【詳解】因?yàn)槎x在SKIPIF1<0上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上也是單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以由SKIPIF1<0可得:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,所以滿足SKIPIF1<0的SKIPIF1<0的取值范圍是SKIPIF1<0,故選:D.【點(diǎn)睛】本題考查利用函數(shù)奇偶性與單調(diào)性解抽象函數(shù)不等式,考查分類討論思想方法,屬中檔題.8.下列函數(shù)中是增函數(shù)的為()A. B. C. D.【答案】D【分析】根據(jù)基本初等函數(shù)的性質(zhì)逐項(xiàng)判斷后可得正確的選項(xiàng).【詳解】對(duì)于A,為上的減函數(shù),不合題意,舍.對(duì)于B,為上的減函數(shù),不合題意,舍.對(duì)于C,在為減函數(shù),不合題意,舍.對(duì)于D,為上的增函數(shù),符合題意,故選:D.9.下列函數(shù)在其定義域上是增函數(shù)的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的知識(shí)可選出答案.【詳解】SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故A不滿足SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故B滿足SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故C不滿足SKIPIF1<0在定義域內(nèi)不單調(diào),故D不滿足故選:B10.已知偶函數(shù)y=f(x)在區(qū)間SKIPIF1<0上是減函數(shù),則下列不等式一定成立的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用函數(shù)的奇偶性與單調(diào)性逐一判斷即可.【詳解】因?yàn)榕己瘮?shù)y=f(x)在區(qū)間(﹣∞,0]上是減函數(shù),所以f(x)在(0,+∞)上是增函數(shù),對(duì)于A,f(﹣3)=f(3),0<2<3,所以f(2)<f(3)=f(﹣3),故A錯(cuò)誤;對(duì)于B,f(﹣2)=f(2),2>1>0,所以f(﹣2)=f(2)>f(1),故B錯(cuò)誤;對(duì)于C?D,f(﹣1)=f(1),0<1<2,所以f(﹣1)=f(1)<f(2),故C錯(cuò)誤,D正確.故選:D.11.已知定義域?yàn)镽的偶函數(shù)y=f(x)﹣3x在[0,+∞)單調(diào)遞增,若f(m)+3≤f(1﹣m)+6m,則實(shí)數(shù)m的取值范圍是()A.(﹣∞,2] B.[2,+∞) C.[SKIPIF1<0,+∞) D.(﹣∞,SKIPIF1<0]【答案】D【分析】設(shè)SKIPIF1<0,由題意可知函數(shù)SKIPIF1<0為偶函數(shù),并且在[0,+∞)單調(diào)遞增,由SKIPIF1<0,得SKIPIF1<0,從而得SKIPIF1<0,進(jìn)而可求出實(shí)數(shù)m的取值范圍【詳解】解:設(shè)SKIPIF1<0,由題意可知函數(shù)SKIPIF1<0為偶函數(shù),并且在[0,+∞)單調(diào)遞增,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0在[0,+∞)單調(diào)遞增,所以SKIPIF1<0,兩邊平方得SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)m的取值范圍是(﹣∞,SKIPIF1<0],故選:D12.設(shè)函數(shù)SKIPIF1<0和SKIPIF1<0,若兩函數(shù)在區(qū)間SKIPIF1<0上的單調(diào)性相同,則把區(qū)間SKIPIF1<0叫做SKIPIF1<0的“穩(wěn)定區(qū)間”.已知區(qū)間SKIPIF1<0為函數(shù)SKIPIF1<0的“穩(wěn)定區(qū)間”,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】依題意可知函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上同增或者同減,則根據(jù)同增或同減分兩種情況討論即可.【詳解】函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,若區(qū)間SKIPIF1<0為函數(shù)SKIPIF1<0的“穩(wěn)定區(qū)間”,則函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上同增或者同減,①若兩函數(shù)在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,即SKIPIF1<0,所以SKIPIF1<0;②若兩函數(shù)在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,即SKIPIF1<0,不等式組無(wú)解.綜上所述;SK
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版市政工程挖掘機(jī)租賃及施工配合合同協(xié)議書3篇
- 2025版智能交通管理系統(tǒng)軟件開(kāi)發(fā)與運(yùn)營(yíng)服務(wù)合同3篇
- 2025版城市綠地養(yǎng)護(hù)勞務(wù)分包合同模板4篇
- 企業(yè)人力資源管理概念
- 二零二五版知識(shí)產(chǎn)權(quán)保密與競(jìng)業(yè)限制服務(wù)合同3篇
- 塑料薄膜光學(xué)性能研究考核試卷
- 2025版事業(yè)單位教師崗位聘用合同續(xù)簽協(xié)議書3篇
- 2025年度碼頭轉(zhuǎn)租及船舶停靠服務(wù)外包合同4篇
- 04毛首鞭形線蟲(chóng)簡(jiǎn)稱鞭蟲(chóng)47課件講解
- 2025年食品行業(yè)食品安全風(fēng)險(xiǎn)評(píng)估合同范本3篇
- 垃圾處理廠工程施工組織設(shè)計(jì)
- 天皰瘡患者護(hù)理
- 2025年蛇年新年金蛇賀歲金蛇狂舞春添彩玉樹(shù)臨風(fēng)福滿門模板
- 《建筑制圖及陰影透視(第2版)》課件 4-直線的投影
- 新生物醫(yī)藥產(chǎn)業(yè)中的人工智能藥物設(shè)計(jì)研究與應(yīng)用
- 防打架毆斗安全教育課件
- 損失補(bǔ)償申請(qǐng)書范文
- 壓力與浮力的原理解析
- 鐵路損傷圖譜PDF
- 裝修家庭風(fēng)水學(xué)入門基礎(chǔ)
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(yíng)(吳洪貴)任務(wù)二 社群的種類與維護(hù)
評(píng)論
0/150
提交評(píng)論