




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省蘇州新草橋中學(xué)2025屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,則()A. B. C. D.2.過(guò)直線上一點(diǎn)作圓的兩條切線,,,為切點(diǎn),當(dāng)直線,關(guān)于直線對(duì)稱時(shí),()A. B. C. D.3.已知集合,集合,那么等于()A. B. C. D.4.陀螺是中國(guó)民間最早的娛樂(lè)工具,也稱陀羅.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫出的是某個(gè)陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.5.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長(zhǎng)為3,則該幾何體表面積為()A. B. C. D.6.已知集合,,,則()A. B. C. D.7.設(shè)是等差數(shù)列,且公差不為零,其前項(xiàng)和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.下圖是來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.9.已知將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若和的圖象都關(guān)于對(duì)稱,則下述四個(gè)結(jié)論:①②③④點(diǎn)為函數(shù)的一個(gè)對(duì)稱中心其中所有正確結(jié)論的編號(hào)是()A.①②③ B.①③④ C.①②④ D.②③④10.已知點(diǎn),若點(diǎn)在曲線上運(yùn)動(dòng),則面積的最小值為()A.6 B.3 C. D.11.如圖,四邊形為平行四邊形,為中點(diǎn),為的三等分點(diǎn)(靠近)若,則的值為()A. B. C. D.12.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)為偶函數(shù),則.14.已知向量,,且,則________.15.平面向量與的夾角為,,,則__________.16.(5分)在長(zhǎng)方體中,已知棱長(zhǎng),體對(duì)角線,兩異面直線與所成的角為,則該長(zhǎng)方體的表面積是____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓O經(jīng)過(guò)橢圓C:的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角.18.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;(2)若,求的最大值.19.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.20.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.21.(12分)已知中,,,是上一點(diǎn).(1)若,求的長(zhǎng);(2)若,,求的值.22.(10分)如圖所示,在四棱錐中,底面是棱長(zhǎng)為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)求二面角的正切值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.2、C【解析】
判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對(duì)稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設(shè)圓的圓心為,半徑為,點(diǎn)不在直線上,要滿足直線,關(guān)于直線對(duì)稱,則必垂直于直線,∴,設(shè),則,,∴,.故選:C.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,考查直線的對(duì)稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對(duì)稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.3、A【解析】
求出集合,然后進(jìn)行并集的運(yùn)算即可.【詳解】∵,,∴.故選:A.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運(yùn)算,屬于基礎(chǔ)題.4、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點(diǎn)睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.5、C【解析】
幾何體是由一個(gè)圓錐和半球組成,其中半球的半徑為1,圓錐的母線長(zhǎng)為3,底面半徑為1,計(jì)算得到答案.【詳解】幾何體是由一個(gè)圓錐和半球組成,其中半球的半徑為1,圓錐的母線長(zhǎng)為3,底面半徑為1,故幾何體的表面積為.故選:.【點(diǎn)睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計(jì)算能力和空間想象能力.6、A【解析】
求得集合中函數(shù)的值域,由此求得,進(jìn)而求得.【詳解】由,得,所以,所以.故選:A【點(diǎn)睛】本小題主要考查函數(shù)值域的求法,考查集合補(bǔ)集、交集的概念和運(yùn)算,屬于基礎(chǔ)題.7、A【解析】
根據(jù)等差數(shù)列的前項(xiàng)和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項(xiàng)和為,充分性:,則對(duì)任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時(shí),,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對(duì)任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時(shí),,此時(shí),,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項(xiàng)和公式是解決本題的關(guān)鍵,屬于中等題.8、D【解析】
根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進(jìn)而求得所求表達(dá)式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點(diǎn)睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查二倍角公式,屬于基礎(chǔ)題.9、B【解析】
首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對(duì)稱性求出、,即可求出的解析式,從而驗(yàn)證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對(duì)稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯(cuò)誤.故選:B【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.10、B【解析】
求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點(diǎn)到直線的距離公式和兩點(diǎn)的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點(diǎn)為圓心,1為半徑的下半圓(包括兩個(gè)端點(diǎn)),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時(shí),到直線距離最短,即為,則的面積的最小值為.故選:B.【點(diǎn)睛】本題考查三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點(diǎn)到直線距離的最小值,這由數(shù)形結(jié)合思想易得.11、D【解析】
使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點(diǎn)睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題.12、D【解析】
先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出,得到其坐標(biāo)可得答案.【詳解】解:由,得,所以,其在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限故選:D【點(diǎn)睛】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點(diǎn):函數(shù)的奇偶性.【方法點(diǎn)晴】本題考查導(dǎo)函數(shù)的奇偶性以及邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,?。?4、【解析】
根據(jù)垂直向量的坐標(biāo)表示可得出關(guān)于實(shí)數(shù)的等式,即可求得實(shí)數(shù)的值.【詳解】,且,則,解得.故答案為:.【點(diǎn)睛】本題考查利用向量垂直求參數(shù),涉及垂直向量的坐標(biāo)表示,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
由平面向量模的計(jì)算公式,直接計(jì)算即可.【詳解】因?yàn)槠矫嫦蛄颗c的夾角為,所以,所以;故答案為【點(diǎn)睛】本題主要考查平面向量模的計(jì)算,只需先求出向量的數(shù)量積,進(jìn)而即可求出結(jié)果,屬于基礎(chǔ)題型.16、10【解析】
作出長(zhǎng)方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長(zhǎng)方體的表面積為.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)或【解析】
(1)先由題意得出,可得出與的等量關(guān)系,然后將點(diǎn)的坐標(biāo)代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對(duì)直線的斜率是否存在進(jìn)行分類討論,當(dāng)直線的斜率不存在時(shí),可求出,然后進(jìn)行檢驗(yàn);當(dāng)直線的斜率存在時(shí),可設(shè)直線的方程為,設(shè)點(diǎn),先由直線與圓相切得出與之間的關(guān)系,再將直線的方程與橢圓的方程聯(lián)立,由韋達(dá)定理,利用弦長(zhǎng)公式并結(jié)合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經(jīng)過(guò)橢圓的上下頂點(diǎn),所以橢圓焦距等于短軸長(zhǎng),可得,又點(diǎn)在橢圓上,所以,解得,即橢圓的方程為.(2)圓的方程為,當(dāng)直線不存在斜率時(shí),解得,不符合題意;當(dāng)直線存在斜率時(shí),設(shè)其方程為,因?yàn)橹本€與圓相切,所以,即.將直線與橢圓的方程聯(lián)立,得:,判別式,即,設(shè),則,所以,解得,所以直線的傾斜角為或.【點(diǎn)睛】求橢圓標(biāo)準(zhǔn)方程的方法一般為待定系數(shù)法,根據(jù)條件確定關(guān)于的方程組,解出,從而寫出橢圓的標(biāo)準(zhǔn)方程.解決直線與橢圓的位置關(guān)系的相關(guān)問(wèn)題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡(jiǎn),然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問(wèn)題.涉及弦中點(diǎn)的問(wèn)題常常用“點(diǎn)差法”解決,往往會(huì)更簡(jiǎn)單.18、(1)(2)【解析】
(1)根據(jù)單調(diào)遞減可知導(dǎo)函數(shù)恒小于等于,采用參變分離的方法分離出,并將的部分構(gòu)造成新函數(shù),分析與最值之間的關(guān)系;(2)通過(guò)對(duì)的導(dǎo)函數(shù)分析,確定有唯一零點(diǎn),則就是的極大值點(diǎn)也是最大值點(diǎn),計(jì)算的值并利用進(jìn)行化簡(jiǎn),從而確定.【詳解】(1)由題意知,在上恒成立,所以在上恒成立.令,則,所以在上單調(diào)遞增,所以,所以.(2)當(dāng)時(shí),.則,令,則,所以在上單調(diào)遞減.由于,,所以存在滿足,即.當(dāng)時(shí),,;當(dāng)時(shí),,.所以在上單調(diào)遞增,在上單調(diào)遞減.所以,因?yàn)?,所以,所以,所?【點(diǎn)睛】(1)求函數(shù)中字母的范圍時(shí),常用的方法有兩種:參變分離法、分類討論法;(2)當(dāng)導(dǎo)函數(shù)不易求零點(diǎn)時(shí),需要將導(dǎo)函數(shù)中某些部分拿出作單獨(dú)分析,以便先確定導(dǎo)函數(shù)的單調(diào)性從而確定導(dǎo)函數(shù)的零點(diǎn)所在區(qū)間,再分析整個(gè)函數(shù)的單調(diào)性,最后確定出函數(shù)的最值.19、(1)證明見(jiàn)解析;(2).【解析】
(1)要證明平面平面,只需證明平面即可;(2)取的中點(diǎn)D,連接BD,以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,分別計(jì)算平面的法向量為與平面的法向量為,利用夾角公式計(jì)算即可.【詳解】(1)在中,,所以,即.因?yàn)?,,,所?所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點(diǎn)D,連接BD,則.以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,且,.由得取.由四邊形為菱形,得;又平面,所以;又,所以平面,所以平面的法向量為.所以.故.【點(diǎn)睛】本題考查面面垂直的判定定理以及利用向量法求二面角正弦值的問(wèn)題,在利用向量法時(shí),關(guān)鍵是點(diǎn)的坐標(biāo)要寫準(zhǔn)確,本題是一道中檔題.20、(1)單調(diào)遞減區(qū)間為,,無(wú)單調(diào)遞增區(qū)間(2)證明見(jiàn)解析【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù)判斷單調(diào)性,(2)整理,化簡(jiǎn)為,令,求的單調(diào)性,以及,即證.【詳解】解:(1)函數(shù)定義域?yàn)?,則,令,,則,當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無(wú)單調(diào)遞增區(qū)間.(2)證明,即為,因?yàn)?,即證,令,則,令,則,當(dāng)時(shí),,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時(shí),,令,,,可知對(duì)于恒成立,即,即,故,即證,故原不等式得證.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,函數(shù)的最值問(wèn)題,屬于中檔題.21、(1)(2)【解析】
(1)運(yùn)用三角形面積公式求出的長(zhǎng)度,然后再運(yùn)用余弦定理求出的長(zhǎng).(2)運(yùn)用正弦定理分別表示出和,結(jié)合已知條件計(jì)算出結(jié)果.【詳解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【點(diǎn)睛】本題考查了正弦定理、三角形面積公式以及余弦定理,結(jié)合三角形熟練運(yùn)用各公式是解題關(guān)鍵,此類題目是常考題型,能夠運(yùn)用公式進(jìn)行邊角互化,需要掌握解題方法.22、(1)見(jiàn)證明;(2)【解析】
(1)取PD中
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025建筑工程合同補(bǔ)充協(xié)議書
- 2025餐飲連鎖加盟合同模板
- 2025健康管理服務(wù)合同
- 部編版(統(tǒng)編)小學(xué)語(yǔ)文四年級(jí)下冊(cè)全冊(cè)教案(教學(xué)設(shè)計(jì))
- 2025鋼筋工程分包合同范本
- 2025企業(yè)食堂托管合同范本
- 2025年全國(guó)大學(xué)生科普知識(shí)競(jìng)賽題庫(kù)450題及答案
- 2025中介服務(wù)合同范本【房屋租賃】
- 先進(jìn)事跡報(bào)告
- 2025年中核核信信息技術(shù)(北京)有限公司招聘筆試參考題庫(kù)含答案解析
- DB11T 1481-2024生產(chǎn)經(jīng)營(yíng)單位生產(chǎn)安全事故應(yīng)急預(yù)案評(píng)審規(guī)范
- 前列腺增生手術(shù)期中醫(yī)診療方案
- 2024年全國(guó)國(guó)家電網(wǎng)招聘之電網(wǎng)計(jì)算機(jī)考試歷年考試題(附答案)
- T-GDASE 0042-2024 固定式液壓升降裝置安全技術(shù)規(guī)范
- 大學(xué)生朋輩心理輔導(dǎo)智慧樹(shù)知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- 《濺射工藝》課件
- 保障體系及小組的管理文件模板
- (高清版)JTGT 3364-02-2019 公路鋼橋面鋪裝設(shè)計(jì)與施工技術(shù)規(guī)范
- 中醫(yī)優(yōu)勢(shì)病種診療方案管理制度
- 衛(wèi)生部婦產(chǎn)科診療規(guī)范及指南
- 魯教版七年級(jí)概率初步練習(xí)50題及參考答案(難度系數(shù)0.8)
評(píng)論
0/150
提交評(píng)論