版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
FT
AIand
theR&D
revolution
TheFTTechforGrowthForumissupportedby
Foreword
T
hislatestreportfromtheFinancialTimesTechfor
GrowthForumaddressesafundamentalquestion
facingcompaniestoday:howdowefosterinnovationinordertodrivegrowth?
Businessesalreadyknowthatthereturnswhichflowfromusingadvancedtechnologiessuchasartificialintelligence
areconsiderable.Thekeyforleadersisunderstandinghowto
unlockthatpotentialbyoptimisingtheirinvestmentinresearchanddevelopment.
Thisreportdrawsonexperttestimonytooffercompaniesa
strategythatwilltakethemtothecuttingedgeoftechnologyandinnovation.
JonathanDerbyshire
Visittheeditorialhubat
/tech-for-growth-forum
TechforGrowthForumEditorFinancialTimes
AIandthe
R&Drevolution
Howcanthisfast-changingtechnologyhelpprovidersupdateproductsmoreefficientlyandsuccessfullyateachstageofR&D.ByLucyColback
andconsumerproducts,anticipatethatathirdofsales,
worth$30tnoverfiveyears,willcomefromnewproducts.
I
naworldoffast-changingconsumerpreferencesandincreasingchoice,companiesthatwanttostayaheadmustworkcontinuouslytoensurethattheirgoodsandservicessatisfythecustomer.In2023McKinseysaidthatbigindustries,includingautomotive,telecoms
Advancementiskeyandtheleveloffreshfundsflowing
intoresearchanddevelopmentisconsiderable.According
tothelatestUKstatistics,£71bnwasspentonR&Din2022,ofwhich£50bncamefromthebusinesssector.IntheUSthefigureisestimatedtobe$886bnwithbusinessaccountingfor$690bn.
Thereturnfromusingadvancedtechnologiesis
considerable.Lookingatthepharmaindustry,Accenture
estimatesthatscaleduseandredesignedworkflowswill
meanthatmedicinescanbebroughttomarketfouryears
faster,earninganextra$2bnforeachsuccessfuldrug.Costsof$2.6bnto$6.7bncouldalsobescythedbyupto45percent.
Withsuchlargesumsatstake,companieswillhaveto
thinkcarefullyaboutwhereandhowtheyspendtheircashtoreachtheconsumer.
Inapreviousreportwestudiedtheroleoftechnologyinmarketingandhowbusinessescanusetechnologytoolstofosterloyaltywithpersonalisedmessagingandtocreateholisticcross-channelstrategies.
Turningtothefrontendoftheproductcycle,thisreportwillexaminehowtechnologycanhelpprovidersupdate
productsmoreefficientlyandsuccessfullyateachstageofR&D.
Thebusinesscaseforsimulationisshifting,withfastertime-to-marketandreducedproductcost
askeyfuturevaluedrivers
Pastvaluedriversofapplyingsimulationtechniques(%)Futurevaluedrivers(%)
Improvedproductperformance
Reductionofproductcost
Reductionofengineeringcost
Fastertime-to-market
Zeroprotoyping
87
73
73
58
67
Fastertime-to-market
Reductionofproductcost
Improvedproductperformance
Reductionofengineeringcost
Zeroprotoyping
73
72
72
70
65
Source:McKinsey
Wearealltechnologycompanies
Mindsetisanimportantfactorininnovation.Sean
Ammirati,professorofentrepreneurshipatCarnegieMellonUniversity,Pennsylvania,saysanentrepreneurialculture
insidetheR&Dfunctionhelpscompaniestoinnovate—eventhelargeones.Teamswithsuchamindsetaremorelikely
tocomeupwithtransformationalratherthanincrementalproductdevelopments.
Ammirati,whohasfoundedseveralmachine-learning
start-ups,saysmanycompaniesdonotmakethenecessaryinvestmentinadjacentandtransformationalinnovation.Heciteda2012paperbyHarvardBusinessReview,whichstated:“Companiesthatallocated70percentofinnovationactivitytocoreinitiatives,20percenttoadjacentonesand10percenttotransformationalonesoutperformedtheir
peers.”
Technologycompaniesshouldinvestmoreinthesetwo
areas,thesameresearchsaid.Giventoday’subiquityof
technology,AmmiratisaysthateverybusinessshouldthinkofitselfasatechnologycompanywhenitdecidesitsR&D
budget.
Identifyyourtarget
Itisimportanttoidentifywhataproductistryingto
achieveandwhoisthetarget—thismightnotalways
beobvious.Pella,theIowawindowanddoormaker,has
designedamechanismthattreatstheinstallerratherthan
thehomeownerasitscustomer.Basedonobservationsandresponses,Pella’snewwindowiseasytoinstallfromthe
insideratherthantheoutsideofaproperty,reducingtherisktoworkerswhenputtingwindowsintotallbuildings.
TargetsareimportantfortheR&Dprocess,too.This
shouldincludedecidingiftheobjectivesincludecuttingthecostofmaterials,thecostofengineering,timetomarket,
orallthree.Havingthisinmindhelpswithsettingkey
performanceindicatorstoassesswhetheraprocessworks.
ConfidenceinthecapabilitiesofAIandML
isdrivingadoption
‘Accuracyofresults’asacriterionfortoolselection(%ofsurveyresults)
AI/ML-basedsimulationoperationalised
mmNoorverylimitedusageofAI/ML-basedsimulation
20
80
9
91
Accuracyofresults
isacriterionfor
toolselection
(n=70)
Accuracyofresults
isnotacriterion
fortoolselection
(n=30)
Source:McKinsey
Theroleofdata
Customerneedsshouldalwaysbetheinspirationforproductdevelopment.Themoredatathatisavailable,theeasier
thesearetodefine.Dataiscriticaltoanytechnologystrategy.Itcan,forinstance,alertcompaniestowhatcustomersare
seekingandwhatisindemand.
Onlinemarketplaceshaveextensiveaccesstodataaboutpurchasinginformationandshoppingsearcheswhichcan
givethemanadvantageoverthevendorswhousetheirsites.
Asweobservedinourreportontheplatformeconomy,thereisvalueinbrandshostingtheirownwebsitesasa
meanstoretainandinterpretcustomerdata.Thiscan
giveinstantinsightsintomodifyingoraddingtowhattheyoffer.ForexamplethebracompanyLivelyintroduced
straplessbrastoitsrangeafteritfoundthatmanywomenweresearchingforthese.TommyJohn,whichmakesmen’sunderwear,foundthatwomenlikeditsproductstooand
itaddedsecond-skin“boyshorts”,teesandpantsaimedatfemales.
Whencollectingorcompilingdata,itisimportantforittobeclean.Thisisespeciallythecasewhendeployingartificialintelligencesystemswhichareinessencestatisticalmodelsthatfeedondata.“Thismeansyourteamneedstocareaboutdata,”Ammiratisays.“Ifyourteamarebeingsloppywith
howtheyenterdatayou’reactuallycausingdownstreamproblems.”
Increasinglyproductscanbedevelopedfora“segmentofone”usingcustomerinformation.SkincarerangessuchasFentyBeautyofferproductstosuitacustomer’sskintone
usingacombinationofimagerecognitionandmachine
learning.Othercompaniesusecustomer-supplieddata
orinsightsgleanedfrompreviouspurchasestosuggestor
customiseproducts.NikeByYouallowscustomerstocreatetheirowntrainersfromapaletteofstyles,coloursand
designs.
Theco-creationofproductsgoesbeyondpersonalisation,Thisiswherecustomersadvisecompanieswhattheywantbyspecifyingmodificationsbeyondthosegiveninadrop-downlist.Ikeaisamongthegroupsthathaveco-createdproductswithcustomersforseveralyears.
AtasummitonAIhostedbyBloomreach,AzitaMartin,
vice-presidentofAIforretailatNvidia,saidthenextchallengeformanycompanieswouldbeinfulfillinghighlypersonalisedorders—essentiallyforamarketofone—quicklyenoughto
satisfytheconsumer.Shesaidthecorrectforecasting,fasterthroughputindistributioncentres(usingcomputervision,roboticsandsimulation)andlast-miledeliverywereareaswhereAIcouldgiveretailersmoreagility.
‘Ifyourteamarebeing
sloppywithhowthey
enterdatayou’re
actuallycausing
downstreamproblems’
Fromconcepttoreality
Peoplecanstillcomeupwithproductideasindependentlyofdata.TechnologycanhelptoacceleratethesetomarketandAIisapowerfultoolinthatprocess.
WhilehumanoversightwillremainasimportantforR&Dasitisforthecreationofmarketingcontent,generative
AIbasedonlargelanguagemodelswillbeinvaluableasa
“conversationstarter”.Presentedwithanideaorevena
vagueconcept,generativeAIcanhelpwithbrainstormingtohelpdevelopaproduct,undertakemarketresearchtofindiftherearesimilaritems,identifyandanalysecompetitorsandgivethoughtsonhowtocreateadifference.AIcanprovide
manyversionsofaproductandsuggestmodificationstosuitanichethatahumandesignermightnothaveconsidered.
Oncetheproductconcepthasbeenhoned,AIcanhelp
todevisemarket-testingstrategiesaswellasaccelerate
producttestinganddesign.Itcancreateandtestiterationsofaproductataspeedfarfasterthanahuman.Itcansuggestmaterialsandsourcingaswellasmanufacturingprocesses.
Thisisparticularlyhelpfulforstart-upsandsmaller
businesses.ThefounderofSkittenz,acompanythatmakesmittencoverstoenlivenskigloves,usedAItoinvestigatewhichmaterialsandmanufacturingprocessesmightbe
suitabletobringtheproducttomarket.
‘Thisisnotsomething
thatyoucanonlytrain
yourexecutiveson.This
issomethingthat
everybodyinthe
organisationneedsto
beawareof’
SuperchargingwithAI
AIisalsoinvaluableforanestablishedR&Dteam,eventhosethatdeploymoretraditionalsystemsandprograms,which
wewillcoverbelow.TheseareincreasinglyaugmentedbyAI,enablingdesignerstodevisemoreoptionsmorequicklythantheunderlyingsoftwarealone.Ammirati,whohasspecialisedinbothcorporateinnovationandAIintheenterprise,saysthatinthepastthreeyearsthesetwoworkstreamshavemerged
andcannolongerbeconsideredseparateareasofexpertise.
BasedonfindingsfromaforumofR&DleadersinJuly
2024,McKinseysaysthatbothanalyticalandgenerative
AIarelikelytohaveabigeffectoninnovationoutcomes.It
estimatesincreasedmarketfitofupto50percent,productperformanceimprovementsof15to60percent,increased
workplaceproductivityofupto50percentandupto40
percentreductionintimetomarket.Simulationsanddeeplearningsurrogatesinparticularincreasetestingcapabilities.Bainresearchmakessimilarfindings,withengineeringhoursreducedbyuptoafifthandcostfallingbybetween5and30percent.
Bothstressthatstakeholders’buy-inisessentialinthe
digitalisationprocess.Thismightbemoreeasilyachievedinaworkforceifleadersareclearthattech,andAIspecifically,
isalongwayfromreplacingpeople.Amongotherreasons,
thisisduetothecontinued,ifdiminished,incidenceof
hallucinations(whenAIcreatesinformationandpresentsitasfact).“HumanplusAI”willbethefuture,especiallyforR&D.
Ammiratisays:“Therightmentalmodelistothinkof
generativeAIasaco-founder,orwhatisoftendescribedas
‘humanintheloopAI’.Sothinkofitmorelikeabrainstormingbuddy,morelikesomeonewhoautomatesfirstdraftsthan
doesalltheworkforyou.”
WhileAIwillnottakeyourjob,hesays,companiesusingthetoolwillbe“incrediblydisruptive”tothosewhoarenot.“Thisisnotsomethingthatyoucanonlytrainyourexecutiveson.
Thisissomethingthateverybodyintheorganisationneedstobeawareof.”Tokeepupwiththecompetition,nevermindstayahead,businessleadersmusteducatetheirworkforceinhowtouseAI.
Thisdoesnotnecessarilymeanteachingprompt
engineering,whichAmmiratibelieveswillbecomeobsoleteasinterfaceschange.IndeedanewinterfaceisalreadyhereintheformofAIagents.TheseLLM-basedAIappscansummonthehelpoftoolsanddataandsoarenotboundbytheconstraintsofthemostrecentupdate.Overtimetheylearnuser
preferences,retainconversationsforcontextandcanaccessanddeployotherprogramsandinformationautonomouslyinresponsetouserrequests,optimisingworkflowsandcreatingsubtasks.
ToomanybusinessesarenotreadytoharnessAIeffectively.TheStateofAI2024,aglobalsurveyof300seniorexecutivesbySearce,themoderntechnologyconsultant,foundthatwhileallUKandUSrespondentswereusingorplanningtouseAI,
only14percentofcompanieshadmanagedtoscalebeyondthepilotstage.
Impedimentsincludedlackoftalent,especiallyforUK
respondents,whichsuggeststhosecompaniesthatarequicktoinvestineducatingtheircurrentworkforcewillhaveanadvantage.Badlymanageddataandpoorlyprioritiseduseswerefurtherbarrierstosuccessfuladoption.
Despitethehurdles,adoptionisnolongeroptional.For
thosethatarestillnotconvinced,Ammiratisayswehave
reacheda“generaltechnologyinflectionpoint”.Thinkofitassimilartowhentheinternetarrived.“Thebusinesseswhosaidno,we’rejustgoingtoavoidthatinternetthing—mostofthem,unfortunately,arenotaround.”
ClassicsimulationuseissignificantlyaheadofAl-andML-basedsimulationuse
Companies’usesofclassicalvsAl/MLsimulationtechniquesbytechnologymaturitylevel(%ofcompanies)
None
Mostlyproofofconceptsorpilots
Useofhighlymaturevirtualengineeringtechnologiesatscale
10x
morecompaniesuseclassicsimulationcomparedtoAl/ML-basedsimulationatahighmaturitylevel
1
1
48
51
34
61
5
2/3
organisationsalreadyuseAI/MLfor
simulations
Classicalsimulation
techniques
(egMBS,FEA,CFD)
AI/ML-basedsimulation techniques(egneuralnetwork,deeplearning)
Source:McKinsey
AutomotivepullsawayastheleadingindustrytoputAlandMLtouse
Al/MLusagebyindustry(%)
Simulationusers
withinautomotiveare1.6xmore
likelytouse
Al/ML-basedsimulationscomparedtomachinery
59
58
50
47
76
Automotive
(n=42)
Aerospace
anddefence
(n=16)
Basicmaterials
(n=27)
Medicaldevices
(n=19)
Machineryand
fabricatedmetals
(n=18)
Source:McKinsey
TechnologiesavailableforR&D
StepsintheR&DprocesssuchastestingandpredictivemodellingincreasinglytakeadvantageofAI,includingmachinelearningandstatisticalmodelling.Theseareenabledatgreaterspeedandscalebytheincreased
processingpowerofcloudcomputing.Whilethisisnotareplacementforexpertoversight,GenAIprovidesan
intuitiveinterfaceforthosewhomaynothavethetechnicaltrainingthatwasonceessentialevenforearlyproduct
development.Thetechnologiesinclude:
MarketResearch
Digitallydistributedmarketsurveys,suchasthoseofferedbySurveyMonkey,GoogleFormsandTypeformtonamejustafew,offerhugereachandenhancedanalytics.
Design
CAD-CAMsoftwaresuchasthatprovidedbyAutodesk,
SiemensandTrimbleisusedfordesigninfieldssuchas
engineering,architectureandmanufacturing.ManyoftheprogramsincorporateAIwhichquicklyprovidesagreater
numberofalternativedesigns.So-calledgenerativedesigndeploysAIalgorithmsderivedbymachinelearning,whichcancomeupwithdesignsoptimisedfordifferentparameterssuchasmaterialeconomiesorstrength.Providedthe
engineerspecifiesminimumrequirementsandconstraintssuchasmanufacturingprocess,loadsandflexibility,the
systemcanoffermanyvariations,someofwhicharelikelytobenovel.
Prototyping
Thistoo“willnowalmostalwaysstartinthedigital
environment”,saysMarkRidley,aformerchieftechnologyofficeroftheFinancialTimeswhoisnowatechnology
consultant.Puredigitalprototyping,hesays,canmassivelyreducecost,whichwillallowmanymoreattempts.Machine-learningmodelsfacilitatedbycloudcapacityhaveenabledmoredigitalexperimentationintheR&Dprocess.Cloud
computingmeanscompaniesnolongerneedbigbudgets
tobuyin-houseserversforcomplexcomputations.“The
technologyofthecloudallowedforreallysignificant
innovation...becauseitprovideddemocratisedtechnology,whichcouldthenbeusedbysmallentrepreneurialteams.”
Ridleyadds:“Thebeautyhereisthatwiththeincreaseincomputationalpower[and]theavailabilityofsoftwaretodothesethings,designerscannowaugmentmoretraditional
modelslikecomputationalfluiddynamicswithML-basedgenerativedesign.”
‘Youwanttokeep
everyfailed
experiment—because
thefailedexperiments
aresourcesoflearning’
Simulations
Theseareincreasinglypopularfortestingmarketing
strategies,suchasdecidingwhichwordingbesttargetsthecustomerandwhichcommunicationsmediumtochoose.
SimulationsuseA/Btesting(comparingdifferentversionsofastrategy).Theyassumethataproductisalreadyviableandthatthesalesperformancewillbeaffectedbymarketingratherthanhowtheproductisdesignedandperforms.
Simulationscanalsobeusedforproductdevelopment,
testingforvariationsinmaterialsanddesign—oftenusing
thesamesoftwareasthatusedtodesigntheproduct.
EngineeringsoftwarefromproviderssuchasAnsysand
Matlabenablesdesignerstorenderobjectsvirtuallyand
simulatesystemsinwhichtotestandanalyseaspectsoftheirbehaviourindifferentenvironments,forinstancetheirfluidandthermaldynamics.Thevalueinsuchsoftwareliesin
beingabletotestwithoutaphysicalprototype.
Understandingmarketreceptivenesstotheproductisthenextstep.Whileadjacenttomarketing,thisislessbasedontestingastrategyandmoredesignedtodetermineviability.Modellingsoftwarecanhelpinareassuchascomparing
pricingandperformanceagainstcompetitors.Itcanalso
examinetheeffectofdifferenteconomicenvironmentsandcompetitoractions.Itiseasiertotestmaterialordesign
behaviourinasimulationthanitistotrytoassesshumanbehaviour,whichissomuchmoreunpredictable.
Whilesimulationscanbeaprocessingburden,augmentedcapacitycancomefromcloudcomputing.
3Dprinting
Oncesimulationsandtestshaverunsuccessfullythereis
stillmorethatcanbedonewithoutnecessarilyinvestingintheactualproduct.Ridleysaysprocessesusedtorequire
drawingsfollowedbyclaymodelling.Digitalisationhas
significantlyloweredthebarrierstoproduction.“Theclaymodelrequiresartistryanddeepexpertise.Andwhatwe’reseeingnowisthatitiseasiertobuypatternsandcheap
technologyofftheshelfonacreditcard.Thatenablesmoreusersandsmallgroupstodotheinnovationthemselves.”
GenAIinterfacingwith3Dprintingmighteventually
allowacreatortodiscusstheattributesitwantsfroma
givenproduct,Ridleysays.Theymightforinstanceaskthecomputertocomeupwithvariantsofamopthatsimplifyaspectssuchascleaningintocorners,rinsingorapplyingdetergent.
Toproduceinjection-mouldedplasticscomponents,
normallyrequiringexpensiveandspecialisedmachinery,
Boschhasdevelopedadvanced3DprintingwithAI
algorithms.Thesecanadjustsubstrateinputs,heatand
pressureinrealtime,ensuringthatprototypequalityisasgoodastheendproduct.Thisalsoallowsforsmallbatch
productionbeforeinvestmentinlarge-scalefacilities.
SeparatelyBoschhasdevelopedceramic3Dprintingwhichmodelsthedifferentshrinkagesexperiencedwhenanobjectiskiln-fired.
Digitaltwinning
Adigitaltwinisavirtualmodelofaplannedoractualreal
worldproductorprocess.Itisastepupfromastraightdigitalsimulationasitcanoptimiseintegration,testing,monitoringandmaintenanceoffacilitiessuchassupplychainsorpowerplants.Atwinisparticularlyusefulinworkingoutlifecyclemanagement,modellingintheoryhowaproductmight
behaveovertime,updatingitselfasnecessary.Thetwinemulates,replicates,observesandevaluatesaproductorprocessandhighlightsopportunitiesforchange.
Demandisgrowing.FortuneBusinessInsightsestimatesthatdigitaltwinningwillpropelan82percentincreaseinthemarketforcomputer-assisteddesignandproductlifecyclemanagementsoftware,helpingittoreach$26.4bnby2030.NorthAmericaisexpectedtoaccountforone-thirdofthe
overallmarket.
Whilestillearlydays,EYhighlightstheindustrial
metaverseasthenextphaseindigitaltwintechnology,withanassetrendereddigitallyinvirtualspace.Siemens,aproviderofdigitaltwintechnology,partneredin2022withNvidiato
createanindustrialmetaverse,allowinguserstoseetheircreationsinanimmersivedigitaluniverse.
Collaborationsoftware
Communicationandcollaborationacrossanorganisationbetweenmembersofdifferentunitsisfareasierwith
technology.Atthemostbasiclevel,Slackallowsfordiscussionbetweencolleagues.Thereareseveral
morespecialisedprogrammesforinnovationandidea
management,suchasMiro,BraineetandIdeanote.Itis
worthnotingthatwhiletheseprogramshelphumansto
shareknowledgeandadvanceideas,theydonotgenerateordevelopconceptsthemselves.
Thistypeofknowledgebankingisstillhelpfulifit
allowscompaniestofindhistoricaldataeasily.“Thekeytoinnovationisnotsuccess,”saysRidley.
“Thekeyisthatyoufailveryquicklyandyoulearnfromeveryoneofthoseexperiments.Youwanttokeepevery
failedexperiment—becausethefailedexperimentsaresourcesoflearning.”
Italsohelpstokeeparecordofhowandwhychangesweremadetoproductstoavoidspuriousreversals—andtobe
surethatthedataisaccurate.
Finally,AIcanhelpwithcheckingthatexistingpatentsorregulationsarenotbeinginfringed.
Talentandtruststandinthewayofgreateradoptionofsimulation
KeyimpedimentsforbroadadoptionofAI/ML-basedsimulationversusclassicsimulation(%ofsurveyresponses)
61
47
44
40
36
ClassicAI/ML-based
61
LimitedtrustinAI/ML-basedmethodologies
Lackoftalent/skillLimitedunderstanding
ofthebenefitsof
AI/ML-basedsimulation
3/5
oforganisations
consideralackof
talentandalimitedunderstandingof
thebenefitsasa
criticalimpedimenttowardsadoptionofAI/ML-based
simulation
Source:McKinsey
What’snext?
EvenasAImakesstridesinboostingcapacitytocreate
moreproductsathigherspeed,quantumtechnologiescouldaddnewdimensions.TheUKhasinvestedinthisareafor
adecadeandinJulythegovernmentannouncedfundingof£100mntoestablishquantumhubstopushforwarddevelopment.
Wearestillsomewayfromunderstandingthefull
potentialofquantumcomputingbutitcouldhelpwith
materialanddrugdiscoveries,modellingexistingmaterialsandchemicalprocesses.
Quantumsensors,whichcanbefarmoresensitivethan
regularsensors,arealreadyusedinsomecommercial
applications.Theseincludebrain-scanning,wherequantum
sensorsallowforawiderrangeofdiagnosticenvironments,andgravitysensing,whichcanbeusedtoscanforsubsurfacecomposition,forinstanceintheconstructionindustry.
Electricbatteryresearchershavealreadydeployedquantumsensorstoanalysemicrocurrentsandimproveproduction
yields.
Therearesomeobstructionstowider-scaleapplication,includingthehypersensitivityofquantumsensors,
whichmakesthemdifficulttouseinsomeenvironments,
theirdemandforpowerandtheircurrentcomplexity.
Neverthelesswecouldseedevelopmentsthatallowfor
morewidespreadcommercialusagewithintwotofiveyears,dependingontheapplication.
PremiumMembers
Beyondtheproduct:Whylearningtolisteniskeytoinnovation
DilipBhatia,chiefexperienceofficer,Lenovo
TheFTTechforGrowthForumissupportedby
HCLTechandLenovo,ourpremiummembers,who
helptofundthereports.
Ourmemberssharetheirbusinessperspectiveon
theforumadvisoryboard.Theydiscusstopicsthat
theforumshouldcoverbutthefinaldecisionrests
withtheeditorialdirector.Thereportsarewritten
byaFinancialTimesjournalistandareeditorially
independent.
Members’viewsstandalone.Theyareseparatefrom
theFTandtheFTTechforGrowthForum.
Howcanbusinessesgetbetteratproductinnovation?Itsoundsparadoxical,butthefirstandmostimportantstepistostop
thinkingsomuchaboutproductsandtechnology.Instead,
companiesshouldfocusmoreonunderstandingeverything
aboutthecustomerexperience—andgettingthatrightmeanslearninghowtolisten.
AtLenovo,welistentofeedbackfromacrossthecustomer
journey—throughadvisorycouncils,customerpanelsand
millionsofproduct-ownershipsurveys—andusethistopowerourinnovation.Ourapproachisagile:wezeroinonspecific
groupstoimprovetheirindividualexperienceofourproducts,ratherthancarryingoutmassive,costlyprojectsthatcantakeyearstocomplete.
Whenprofessionalstoldustheylovedthe“sleeknessand
sturdiness”oftheThinkPad,welistenedandbuiltonit.To
dev
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 家私行業(yè)美工設(shè)計(jì)心得
- 五年級(jí)班主任的成長(zhǎng)與總結(jié)
- 教研工作推動(dòng)學(xué)術(shù)創(chuàng)新
- 家具行業(yè)設(shè)計(jì)創(chuàng)新培訓(xùn)分享
- 酒店倉(cāng)儲(chǔ)管理總結(jié)
- 創(chuàng)新產(chǎn)品推廣總結(jié)
- 《氣防知識(shí)學(xué)習(xí)資料》課件
- 《黃培志危重醫(yī)學(xué)》課件
- 《姬花市場(chǎng)推廣》課件
- 2022年云南省普洱市公開(kāi)招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- (已壓縮)礦產(chǎn)資源儲(chǔ)量技術(shù)標(biāo)準(zhǔn)解讀300問(wèn)-1-90
- 《阿爾茨海默病康復(fù)》課件
- 2022-2023學(xué)年福建省泉州市惠安縣三年級(jí)(上)期末數(shù)學(xué)試卷
- 期末綜合試卷(含答案)2024-2025學(xué)年蘇教版數(shù)學(xué)四年級(jí)上冊(cè)
- 2024-2025學(xué)年人教版道法八年級(jí)上冊(cè) 第一學(xué)期期末測(cè)試卷01
- 徐州市2023-2024學(xué)年八年級(jí)上學(xué)期期末地理試卷(含答案解析)
- 人教版數(shù)學(xué)小學(xué)二年級(jí)上冊(cè)無(wú)紙筆測(cè)試題
- GA 1809-2022城市供水系統(tǒng)反恐怖防范要求
- 電壓10kV及以下送配電系統(tǒng)調(diào)試報(bào)告
- 最新手機(jī)開(kāi)發(fā)項(xiàng)目流程圖
- 反滲透凈水機(jī)節(jié)水技術(shù)創(chuàng)新
評(píng)論
0/150
提交評(píng)論