版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AdditiveModels,Trees,andRelatedModelsProf.LiqingZhangDept.ComputerScience&Engineering,ShanghaiJiaotongUniversityIntroduction9.1:GeneralizedAdditiveModels9.2:Tree-BasedMethods9.3:PRIM:BumpHunting9.4:MARS:MultivariateAdaptiveRegressionSplines9.5:HME:HierarchicalMixtureofExperts9.1GeneralizedAdditiveModelsIntheregressionsetting,ageneralizedadditivemodelshastheform:
Here
sareunspecifiedsmoothandnonparametricfunctions.InsteadofusingLBE(LinearBasisExpansion)inchapter5,wefiteachfunctionusingascatterplotsmoother(e.g.acubicsmoothingspline)GAM(cont.)Fortwo-classclassification,theadditivelogisticregressionmodelis:
Here
GAM(cont)Ingeneral,theconditionalmeanU(x)ofaresponseyisrelatedtoanadditivefunctionofthepredictorsviaalinkfunctiong:
Examplesofclassicallinkfunctions:Identity:Logit:Probit:Log:FittingAdditiveModelsTheadditivemodelhastheform:HerewehaveGivenobservations,acriterionlikepenalizedsumsquarescanbespecifiedforthisproblem:
Wherearetuningparameters.FAM(cont.)Conclusions:ThesolutiontominimizePRSSiscubicsplines,howeverwithoutfurtherrestrictionsthesolutionisnotunique.Ifholds,itiseasytoseethat:
Ifinadditiontothisrestriction,thematrixofinputvalueshasfullcolumnrank,then(9.7)isastrictconvexcriterionandhasanuniquesolution.Ifthematrixissingular,thenthelinearpartoffjcannotbeuniquelydetermined.(Buja1989)LearningGAM:BackfittingBackfittingalgorithmInitialize:Cycle: j=1,2,…,p,…,1,2,…,p,…,(mcycles)
UntilthefunctionschangelessthanaprespecifiedthresholdBackfitting:PointstoPonderComputationalAdvantage?Convergence?Howtochoosefittingfunctions?FAM(cont.)Initialize:Cycle:untilthefunctionschangelessthanaprespecifiedthreshold.Algorithm9.1TheBackfittingAlgorithmforAdditiveModels.AdditiveLogisticRegression2024/12/711ThegeneralizedadditivelogisticmodelhastheformThefunctionsareestimatedbyabackfittingwithinaNewton-Raphsonprocedure.LogisticRegressionModeltheclassposteriorintermsofK-1log-oddsDecisionboundaryissetofpointsLineardiscriminantfunctionforclasskClassifytotheclasswiththelargestvalueforits
k(x)LogisticRegressioncon’tParametersestimationObjectivefunctionParametersestimationIRLS(iterativelyreweightedleastsquares)Particularly,fortwo-classcase,usingNewton-Raphsonalgorithmtosolvetheequation,theobjectivefunction:LogisticRegressioncon’tLogisticRegressioncon’tLogisticRegressioncon’tLogisticRegressioncon’tLogisticRegressioncon’tFeatureselectionFindasubsetofthevariablesthataresufficientforexplainingtheirjointeffectontheresponse.Onewayistorepeatedlydroptheleastsignificantcoefficient,andrefitthemodeluntilnofurthertermscanbedroppedAnotherstrategyistorefiteachmodelwithonevariableremoved,andperformananalysis
ofdeviancetodecidewhichonevariabletoexcludeRegularizationMaximumpenalizedlikelihoodShrinkingtheparametersviaanL1constraint,imposingamarginconstraintintheseparablecaseFittinglogisticregressionFittingadditivelogisticregression1.2.Iterate:Usingweightedleastsquarestofitalinearmodeltoziwithweightswi,givenewestimates3.Continuestep2until converge1. where2.Iterate:b.a.a.c.c.Usingweightedbackfittingalgorithmtofitanadditivemodeltoziwithweightswi,givenewestimatesb.3.Continuestep2untilconvergeAdditiveLogisticRegression:BackfittingAdditiveLogisticRegressionComputestartingvalues:,where,thesampleproportionofones,andset.Defineand.Iterate:ConstructtheworkingtargetvariableConstructweightsFitanadditivemodeltothetargetsziwithweightswi,usingaweightedbackfittingalgorithm.ThisgivesnewestimatesContinuestep2.untilthechangeinthefunctionsfallsbelowaprespecifiedthreshold.Algorithm9.2LocalScoringAlgorithmfortheAdditiveLogisticRegressionModel.SPAMDetectionviaAdditiveLogisticRegressionInputvariables(predictors):48quantitativepredictors—thepercentageofwordsintheemailthatmatchagivenword.Examplesincludebusiness,address,internet,free,andgeorge.Theideawasthatthesecouldbecustomizedforindividualusers.6quantitativepredictors—thepercentageofcharactersintheemailthatmatchagivencharacter.Thecharactersarech;,ch(,ch[,ch!,ch$,andch#.Theaveragelengthofuninterruptedsequencesofcapitalletters:CAPAVE.Thelengthofthelongestuninterruptedsequenceofcapitalletters:CAPMAX.Thesumofthelengthofuninterruptedsequencesofcapitalletters:CAPTOT.Outputvariable:SPAM(1)orEmail(0)fj’saretakenascubicsmoothingsplines2024/12/7AdditiveModels222024/12/7AdditiveModels232024/12/7AdditiveModels24SPAMDetection:ResultsTrueClassPredictedClassEmail(0)SPAM(1)Email(0)58.5%2.5%SPAM(1)2.7%36.2%Sensitivity:Probabilityofpredictingspamgiventruestateisspam=Specificity:Probabilityofpredictingemailgiventruestateisemail=GAM:SummaryUsefulflexibleextensionsoflinearmodelsBackfittingalgorithmissimpleandmodularInterpretabilityofthepredictors(inputvariables)arenotobscuredNotsuitableforverylargedataminingapplications(why?)Introduction9.1:GeneralizedAdditiveModels9.2:Tree-BasedMethods9.3:PRIM:BumpHunting9.4:MARS:MultivariateAdaptiveRegressionSplines9.5:HME:HierarchicalMixtureofExperts9.2Tree-BasedMethodBackground:Tree-basedmodelspartitionthefeaturespaceintoasetofrectangles,andthenfitasimplemodel(likeaconstant)ineachone.Apopularmethodfortree-basedregressionandclassificationiscalledCART(classificationandregressiontree)CARTCARTExample:Let’sconsideraregressionproblem:continuousresponseYinputsX1andX2.Tosimplifymatters,weconsiderthepartitionshownbythetoprightpaneloffigure.ThecorrespondingregressionmodelpredictsYwithaconstantCminregionRm:Forillustration,wechooseC1=-5,C2=-7,C3=0,C4=2,C5=4inthebottomrightpanelinfigure9.2.RegressionTreeSupposewehaveapartitionintoMregions:R1R2…..RM.WemodeltheresponseYwithaconstantCmineachregion:
IfweadoptasourcriterionminimizationofRSS,itiseasytoseethat:RegressionTree(cont.)FindingthebestbinarypartitionintermofminimumRSSiscomputationallyinfeasibleAgreedyalgorithmisused.
HereRegressionTree(cont.)Foranychoicejands,theinnerminimizationissolvedby:ForeachsplittingvariableXj
thedeterminationofsplitpointscanbedoneveryquicklyandhencebyscanningthroughalloftheinput,determinationofthebestpair(j,s)isfeasible.Havingfoundthebestsplit,wepartitionthedataintotworegionsandrepeatthesplittingprogressineachofthetworegions.RegressionTree(cont.)Weindexterminalnodesbym,withnodemrepresentingregionRm.Let|T|denotesthenumberofterminalnotesinT.Letting:Wedefinethecostcomplexitycriterion:ClassificationTree:theproportionofclasskonmode:themajorityclassonnodemInsteadofQm(T)definedin(9.15)inregression,wehavedifferentmeasuresQm(T)ofnodeimpurityincludingthefollowing:MisclassificationError:GiniIndex:Cross-entropy(deviance):ClassificationTree(cont.)Example:Fortwoclasses,ifpistheproportionofinthesecondclass,thesethreemeasuresare:
1-max(p,1-p),2p(1-p),-plog(p)-(1-p)log(1-p)2024/12/7AdditiveModels372024/12/7AdditiveModels38Introduction9.1:GeneralizedAdditiveModels9.2:Tree-BasedMethods9.3:PRIM:BumpHunting9.4:MARS:MultivariateAdaptiveRegressionSplines9.5:HME:HierarchicalMixtureofExperts9.3PRIM:BumpHuntingThepatientruleinductionmethod(PRIM)findsboxesinthefeaturespaceandseeksboxesinwhichtheresponseaverageishigh.Henceitlooksformaximainthetargetfunction,anexerciseknownasbumphunting.PRIM(cont.)PRIM(cont.)PRIM(cont.)Introduction9.1:GeneralizedAdditiveModels9.2:Tree-BasedMethods9.3:PRIM:BumpHunting9.4:MARS:MultivariateAdaptiveRegressionSplines9.5:HME:HierarchicalMixtureofExpertsMARS:MultivariateAdaptiveRegressionSplinesMARSusesexpansionsinpiecewiselinearbasisfunctionsoftheform:(x-t)+and(t-x)+.Wecallthetwofunctionsareflectedpair.MARS(cont.)TheideaofMARSistoformreflectedpairsforeachinputXjwithknotsateachobservedvalueXij
ofthatinput.Therefore,thecollectionofbasisfunctionis:Themodelhastheform:whereeachhm(x)isafunctioninCoraproductoftwoormoresuchfunctions.MARS(cont.)Westartwithonlytheconstantfunctionh0(x)=1inthemodelsetMandallfunctionsinthesetCarecandidatefunctions.AteachstageweaddtothemodelsetMthetermoftheform:
thatproducesthelargestdecreaseintrainingerror.TheprocessiscontinueduntilthemodelsetMcontainssomepresetmaximumnumberofterms.MARS(cont.)MARS(cont.)MARS(cont.)Thisprogresstypicallyoverfitsthedataandsoabackwarddeletionprocedureisapplied.ThetermwhoseremovalcausesthesmallestincreaseinRSSisdeletedfromthemodelateachstep,producinganestimatedbestmodelofeachsize.GeneralizedcrossvalidationisappliedtoestimatetheoptimalvalueofThevalueM(λ)istheeffectivenumberofparametersinthemodel.Introduction9.1:GeneralizedAdditiveModels9.2:Tree-BasedMethods9.3:PRIM:BumpHunting9.4:MARS:MultivariateAdaptiveRegressionSplines9.5:HME:HierarchicalMixtureofExpertsHierarchicalMixturesofExpertsTheHMEmethodcanbeviewedasavariantofthetree-basedmethods.Difference:Themaindifferenceisthatthetreesplitsarenotharddecisionsbutrathersoftprobabilisticones.InanHMEalinear(orlogisticregression)modelisfittedineachterminalnode,insteadofaconstantasintheCART.HME(cont.)Asimpletwo-levelHMEmodelisshowninFigure.Itcanbeviewedasatreewithsoftsplitsateachnon-terminalnode.HME(cont.)Theterminalnodeiscalledexpertandthenon-terminalnodeiscalledgatingnetworks.TheideaeachexpertprovidesapredictionabouttheresponseY,thesearecombinedtogetherbythegatingnetworks.
HME(cont.)Thetopgatingnetworkhastheoutput:whereeachisavectorofunknownparameters.Thisrepres-entsasoftK-waysplit(K=2inFigure9.13.)Eachistheprobabilityofassigninganobservationwithfeaturevectorxtothejthbranch.HME(cont.)Atthesecondlevel,thegatingnetworkshaveasimilarform:Attheexperts,wehaveamodelfortheresponsevariableoftheform:Thisdiffersaccordingtotheproblem.HME(cont.)Reg
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院調(diào)動(dòng)崗位申請(qǐng)書(shū)(8篇)
- 勤儉節(jié)約從我做起廣播稿(8篇)
- 網(wǎng)絡(luò)釣魚(yú)識(shí)別模型研究-洞察分析
- 犀角地黃丸藥效安全性-洞察分析
- 網(wǎng)站速度提升策略-洞察分析
- 壓縮算法優(yōu)化研究-洞察分析
- 虛擬現(xiàn)實(shí)室內(nèi)設(shè)計(jì)體驗(yàn)-洞察分析
- 稀土壓延材料性能測(cè)試-洞察分析
- 歷史新課程改革的心得(5篇)
- 游戲技術(shù)發(fā)展趨勢(shì)-洞察分析
- 非物質(zhì)文化遺產(chǎn)主題班會(huì)之英歌舞課件
- 《人工智能基礎(chǔ)》課件-AI的前世今生:她從哪里來(lái)
- 西方經(jīng)濟(jì)學(xué)考試題庫(kù)(含參考答案)
- 引水式水電站工程施工組織設(shè)計(jì)
- 創(chuàng)業(yè)基礎(chǔ)(浙江財(cái)經(jīng)大學(xué))智慧樹(shù)知到期末考試答案章節(jié)答案2024年浙江財(cái)經(jīng)大學(xué)
- 靜配中心PIVAS標(biāo)準(zhǔn)操作流程培訓(xùn)
- 期末檢測(cè)卷(試題)-2023-2024學(xué)年五年級(jí)上冊(cè)數(shù)學(xué)北師大版
- 兒童文學(xué)概論(第二版) 課件 第4、5章 外國(guó)兒童文學(xué)概述、兒童文學(xué)的各種文體
- 消化系統(tǒng)疾病健康宣教
- 小學(xué)英語(yǔ)教學(xué)論智慧樹(shù)知到期末考試答案章節(jié)答案2024年麗水學(xué)院
- 完整版鋁板雨棚施工方案
評(píng)論
0/150
提交評(píng)論