模型估計(jì)與選擇_第1頁(yè)
模型估計(jì)與選擇_第2頁(yè)
模型估計(jì)與選擇_第3頁(yè)
模型估計(jì)與選擇_第4頁(yè)
模型估計(jì)與選擇_第5頁(yè)
已閱讀5頁(yè),還剩56頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

AdditiveModels,Trees,andRelatedModelsProf.LiqingZhangDept.ComputerScience&Engineering,ShanghaiJiaotongUniversityIntroduction9.1:GeneralizedAdditiveModels9.2:Tree-BasedMethods9.3:PRIM:BumpHunting9.4:MARS:MultivariateAdaptiveRegressionSplines9.5:HME:HierarchicalMixtureofExperts9.1GeneralizedAdditiveModelsIntheregressionsetting,ageneralizedadditivemodelshastheform:

Here

sareunspecifiedsmoothandnonparametricfunctions.InsteadofusingLBE(LinearBasisExpansion)inchapter5,wefiteachfunctionusingascatterplotsmoother(e.g.acubicsmoothingspline)GAM(cont.)Fortwo-classclassification,theadditivelogisticregressionmodelis:

Here

GAM(cont)Ingeneral,theconditionalmeanU(x)ofaresponseyisrelatedtoanadditivefunctionofthepredictorsviaalinkfunctiong:

Examplesofclassicallinkfunctions:Identity:Logit:Probit:Log:FittingAdditiveModelsTheadditivemodelhastheform:HerewehaveGivenobservations,acriterionlikepenalizedsumsquarescanbespecifiedforthisproblem:

Wherearetuningparameters.FAM(cont.)Conclusions:ThesolutiontominimizePRSSiscubicsplines,howeverwithoutfurtherrestrictionsthesolutionisnotunique.Ifholds,itiseasytoseethat:

Ifinadditiontothisrestriction,thematrixofinputvalueshasfullcolumnrank,then(9.7)isastrictconvexcriterionandhasanuniquesolution.Ifthematrixissingular,thenthelinearpartoffjcannotbeuniquelydetermined.(Buja1989)LearningGAM:BackfittingBackfittingalgorithmInitialize:Cycle: j=1,2,…,p,…,1,2,…,p,…,(mcycles)

UntilthefunctionschangelessthanaprespecifiedthresholdBackfitting:PointstoPonderComputationalAdvantage?Convergence?Howtochoosefittingfunctions?FAM(cont.)Initialize:Cycle:untilthefunctionschangelessthanaprespecifiedthreshold.Algorithm9.1TheBackfittingAlgorithmforAdditiveModels.AdditiveLogisticRegression2024/12/711ThegeneralizedadditivelogisticmodelhastheformThefunctionsareestimatedbyabackfittingwithinaNewton-Raphsonprocedure.LogisticRegressionModeltheclassposteriorintermsofK-1log-oddsDecisionboundaryissetofpointsLineardiscriminantfunctionforclasskClassifytotheclasswiththelargestvalueforits

k(x)LogisticRegressioncon’tParametersestimationObjectivefunctionParametersestimationIRLS(iterativelyreweightedleastsquares)Particularly,fortwo-classcase,usingNewton-Raphsonalgorithmtosolvetheequation,theobjectivefunction:LogisticRegressioncon’tLogisticRegressioncon’tLogisticRegressioncon’tLogisticRegressioncon’tLogisticRegressioncon’tFeatureselectionFindasubsetofthevariablesthataresufficientforexplainingtheirjointeffectontheresponse.Onewayistorepeatedlydroptheleastsignificantcoefficient,andrefitthemodeluntilnofurthertermscanbedroppedAnotherstrategyistorefiteachmodelwithonevariableremoved,andperformananalysis

ofdeviancetodecidewhichonevariabletoexcludeRegularizationMaximumpenalizedlikelihoodShrinkingtheparametersviaanL1constraint,imposingamarginconstraintintheseparablecaseFittinglogisticregressionFittingadditivelogisticregression1.2.Iterate:Usingweightedleastsquarestofitalinearmodeltoziwithweightswi,givenewestimates3.Continuestep2until converge1. where2.Iterate:b.a.a.c.c.Usingweightedbackfittingalgorithmtofitanadditivemodeltoziwithweightswi,givenewestimatesb.3.Continuestep2untilconvergeAdditiveLogisticRegression:BackfittingAdditiveLogisticRegressionComputestartingvalues:,where,thesampleproportionofones,andset.Defineand.Iterate:ConstructtheworkingtargetvariableConstructweightsFitanadditivemodeltothetargetsziwithweightswi,usingaweightedbackfittingalgorithm.ThisgivesnewestimatesContinuestep2.untilthechangeinthefunctionsfallsbelowaprespecifiedthreshold.Algorithm9.2LocalScoringAlgorithmfortheAdditiveLogisticRegressionModel.SPAMDetectionviaAdditiveLogisticRegressionInputvariables(predictors):48quantitativepredictors—thepercentageofwordsintheemailthatmatchagivenword.Examplesincludebusiness,address,internet,free,andgeorge.Theideawasthatthesecouldbecustomizedforindividualusers.6quantitativepredictors—thepercentageofcharactersintheemailthatmatchagivencharacter.Thecharactersarech;,ch(,ch[,ch!,ch$,andch#.Theaveragelengthofuninterruptedsequencesofcapitalletters:CAPAVE.Thelengthofthelongestuninterruptedsequenceofcapitalletters:CAPMAX.Thesumofthelengthofuninterruptedsequencesofcapitalletters:CAPTOT.Outputvariable:SPAM(1)orEmail(0)fj’saretakenascubicsmoothingsplines2024/12/7AdditiveModels222024/12/7AdditiveModels232024/12/7AdditiveModels24SPAMDetection:ResultsTrueClassPredictedClassEmail(0)SPAM(1)Email(0)58.5%2.5%SPAM(1)2.7%36.2%Sensitivity:Probabilityofpredictingspamgiventruestateisspam=Specificity:Probabilityofpredictingemailgiventruestateisemail=GAM:SummaryUsefulflexibleextensionsoflinearmodelsBackfittingalgorithmissimpleandmodularInterpretabilityofthepredictors(inputvariables)arenotobscuredNotsuitableforverylargedataminingapplications(why?)Introduction9.1:GeneralizedAdditiveModels9.2:Tree-BasedMethods9.3:PRIM:BumpHunting9.4:MARS:MultivariateAdaptiveRegressionSplines9.5:HME:HierarchicalMixtureofExperts9.2Tree-BasedMethodBackground:Tree-basedmodelspartitionthefeaturespaceintoasetofrectangles,andthenfitasimplemodel(likeaconstant)ineachone.Apopularmethodfortree-basedregressionandclassificationiscalledCART(classificationandregressiontree)CARTCARTExample:Let’sconsideraregressionproblem:continuousresponseYinputsX1andX2.Tosimplifymatters,weconsiderthepartitionshownbythetoprightpaneloffigure.ThecorrespondingregressionmodelpredictsYwithaconstantCminregionRm:Forillustration,wechooseC1=-5,C2=-7,C3=0,C4=2,C5=4inthebottomrightpanelinfigure9.2.RegressionTreeSupposewehaveapartitionintoMregions:R1R2…..RM.WemodeltheresponseYwithaconstantCmineachregion:

IfweadoptasourcriterionminimizationofRSS,itiseasytoseethat:RegressionTree(cont.)FindingthebestbinarypartitionintermofminimumRSSiscomputationallyinfeasibleAgreedyalgorithmisused.

HereRegressionTree(cont.)Foranychoicejands,theinnerminimizationissolvedby:ForeachsplittingvariableXj

thedeterminationofsplitpointscanbedoneveryquicklyandhencebyscanningthroughalloftheinput,determinationofthebestpair(j,s)isfeasible.Havingfoundthebestsplit,wepartitionthedataintotworegionsandrepeatthesplittingprogressineachofthetworegions.RegressionTree(cont.)Weindexterminalnodesbym,withnodemrepresentingregionRm.Let|T|denotesthenumberofterminalnotesinT.Letting:Wedefinethecostcomplexitycriterion:ClassificationTree:theproportionofclasskonmode:themajorityclassonnodemInsteadofQm(T)definedin(9.15)inregression,wehavedifferentmeasuresQm(T)ofnodeimpurityincludingthefollowing:MisclassificationError:GiniIndex:Cross-entropy(deviance):ClassificationTree(cont.)Example:Fortwoclasses,ifpistheproportionofinthesecondclass,thesethreemeasuresare:

1-max(p,1-p),2p(1-p),-plog(p)-(1-p)log(1-p)2024/12/7AdditiveModels372024/12/7AdditiveModels38Introduction9.1:GeneralizedAdditiveModels9.2:Tree-BasedMethods9.3:PRIM:BumpHunting9.4:MARS:MultivariateAdaptiveRegressionSplines9.5:HME:HierarchicalMixtureofExperts9.3PRIM:BumpHuntingThepatientruleinductionmethod(PRIM)findsboxesinthefeaturespaceandseeksboxesinwhichtheresponseaverageishigh.Henceitlooksformaximainthetargetfunction,anexerciseknownasbumphunting.PRIM(cont.)PRIM(cont.)PRIM(cont.)Introduction9.1:GeneralizedAdditiveModels9.2:Tree-BasedMethods9.3:PRIM:BumpHunting9.4:MARS:MultivariateAdaptiveRegressionSplines9.5:HME:HierarchicalMixtureofExpertsMARS:MultivariateAdaptiveRegressionSplinesMARSusesexpansionsinpiecewiselinearbasisfunctionsoftheform:(x-t)+and(t-x)+.Wecallthetwofunctionsareflectedpair.MARS(cont.)TheideaofMARSistoformreflectedpairsforeachinputXjwithknotsateachobservedvalueXij

ofthatinput.Therefore,thecollectionofbasisfunctionis:Themodelhastheform:whereeachhm(x)isafunctioninCoraproductoftwoormoresuchfunctions.MARS(cont.)Westartwithonlytheconstantfunctionh0(x)=1inthemodelsetMandallfunctionsinthesetCarecandidatefunctions.AteachstageweaddtothemodelsetMthetermoftheform:

thatproducesthelargestdecreaseintrainingerror.TheprocessiscontinueduntilthemodelsetMcontainssomepresetmaximumnumberofterms.MARS(cont.)MARS(cont.)MARS(cont.)Thisprogresstypicallyoverfitsthedataandsoabackwarddeletionprocedureisapplied.ThetermwhoseremovalcausesthesmallestincreaseinRSSisdeletedfromthemodelateachstep,producinganestimatedbestmodelofeachsize.GeneralizedcrossvalidationisappliedtoestimatetheoptimalvalueofThevalueM(λ)istheeffectivenumberofparametersinthemodel.Introduction9.1:GeneralizedAdditiveModels9.2:Tree-BasedMethods9.3:PRIM:BumpHunting9.4:MARS:MultivariateAdaptiveRegressionSplines9.5:HME:HierarchicalMixtureofExpertsHierarchicalMixturesofExpertsTheHMEmethodcanbeviewedasavariantofthetree-basedmethods.Difference:Themaindifferenceisthatthetreesplitsarenotharddecisionsbutrathersoftprobabilisticones.InanHMEalinear(orlogisticregression)modelisfittedineachterminalnode,insteadofaconstantasintheCART.HME(cont.)Asimpletwo-levelHMEmodelisshowninFigure.Itcanbeviewedasatreewithsoftsplitsateachnon-terminalnode.HME(cont.)Theterminalnodeiscalledexpertandthenon-terminalnodeiscalledgatingnetworks.TheideaeachexpertprovidesapredictionabouttheresponseY,thesearecombinedtogetherbythegatingnetworks.

HME(cont.)Thetopgatingnetworkhastheoutput:whereeachisavectorofunknownparameters.Thisrepres-entsasoftK-waysplit(K=2inFigure9.13.)Eachistheprobabilityofassigninganobservationwithfeaturevectorxtothejthbranch.HME(cont.)Atthesecondlevel,thegatingnetworkshaveasimilarform:Attheexperts,wehaveamodelfortheresponsevariableoftheform:Thisdiffersaccordingtotheproblem.HME(cont.)Reg

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論