1.1生活中的立體圖形(6大題型提分練)(解析版)_第1頁
1.1生活中的立體圖形(6大題型提分練)(解析版)_第2頁
1.1生活中的立體圖形(6大題型提分練)(解析版)_第3頁
1.1生活中的立體圖形(6大題型提分練)(解析版)_第4頁
1.1生活中的立體圖形(6大題型提分練)(解析版)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

七年級(jí)上冊(cè)數(shù)學(xué)《第一章豐富的圖形世界》1.1生活中的立體圖形知識(shí)點(diǎn)一知識(shí)點(diǎn)一常見的幾何體知識(shí)點(diǎn)二知識(shí)點(diǎn)二常見幾何體的分類●(1)通常按形狀分為三類(柱體、錐體、球):柱體:長(zhǎng)方體、圓柱、棱柱;錐體:圓錐、棱錐;球.●(2)按圍成幾何體的面分類:圓柱、圓錐、球;無曲的面:長(zhǎng)方體、棱柱、棱錐.立體圖形都是由一個(gè)或幾個(gè)面圍成的,面有平的面和曲的面之分.●(3)按有無頂點(diǎn)分類:有頂點(diǎn):長(zhǎng)方體、圓錐、棱柱、棱錐;無頂點(diǎn):圓柱、球.知識(shí)點(diǎn)三知識(shí)點(diǎn)三棱柱★1、在棱柱中,相鄰兩個(gè)面的交線叫作棱(edge),相鄰兩個(gè)側(cè)面的交線叫作側(cè)棱.★2、特征(1)棱柱的所有側(cè)棱長(zhǎng)都相等;(2)棱柱的上、下底面的形狀相同、大小相同,都是多邊形,并且互相平行;(3)棱柱的側(cè)面的形狀都是平行四邊形.★3、棱柱的分類(1)人們通常根據(jù)底面圖形的邊數(shù)將棱柱分為三棱柱、四棱柱、五棱柱、六棱柱……它們底面圖形的形狀分別為三角形、四邊形、五邊形、六邊形……長(zhǎng)方體、正方體都是四棱柱.棱柱的底面是幾邊形就叫做幾棱柱.(2)棱柱可以分為直棱柱和斜棱柱.(3)n棱柱有(n+2)個(gè)面,2n個(gè)頂點(diǎn),3n條棱.★4、圓柱與棱柱的相同點(diǎn)與不同點(diǎn).知識(shí)點(diǎn)四知識(shí)點(diǎn)四圖形的構(gòu)成元素圖形的構(gòu)成元素:圖形是由點(diǎn)、線、面構(gòu)成的.面和面相交的地方形成線,線有直線和曲線之分.點(diǎn)無大小,線無粗細(xì),面無厚薄.知識(shí)點(diǎn)五知識(shí)點(diǎn)五點(diǎn)、線、面、體之間的關(guān)系點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體【注意】一般地,含有曲面的幾何體,都可以看成由某一平面圖形繞著某一旋轉(zhuǎn)軸旋轉(zhuǎn)一定的角度得到.旋轉(zhuǎn)軸或旋轉(zhuǎn)角度不同,所得到的幾何體不一定相同.題型一常見的幾何體解題技巧提煉認(rèn)識(shí)立體圖形,找出各立體圖形的表面包含的平面圖形是解題的關(guān)鍵.1.(2024?朝陽區(qū)校級(jí)三模)下面幾何體中,是三棱錐的是()A. B. C. D.【分析】根據(jù)立體圖形的分類進(jìn)行辨別、求解.【解答】解:由題意得,選項(xiàng)A是圓柱體,選項(xiàng)B是圓錐體,選項(xiàng)C是三棱錐體,選項(xiàng)D是球體,∴選項(xiàng)A,B,D不符合題意,選項(xiàng)C符合題意,故選:C.【點(diǎn)評(píng)】此題考查了立體圖形的分類能力,關(guān)鍵是能準(zhǔn)確理解并運(yùn)用其定義進(jìn)行辨別.2.(2024?二道區(qū)校級(jí)模擬)“力旺杯”足球賽在我校順利進(jìn)行,九年1班的足球隊(duì)爭(zhēng)得了冠軍,如圖所示為其獲得的冠軍獎(jiǎng)杯,用數(shù)學(xué)的眼光觀察這個(gè)獎(jiǎng)杯,其中不包含的立體圖形是()A.球體 B.圓柱體 C.長(zhǎng)方體 D.四棱錐【分析】根據(jù)常見幾何體解答即可.【解答】解:如圖所示為其獲得的冠軍獎(jiǎng)杯,用數(shù)學(xué)的眼光觀察這個(gè)獎(jiǎng)杯,其中不包含的立體圖形是圓柱體.故選:B.【點(diǎn)評(píng)】本題主要考查的是認(rèn)識(shí)立體圖形,找出各立體圖形的表面包含的平面圖形是解題的關(guān)鍵3.(2024?河源一模)下面幾何體中,是長(zhǎng)方體的為()A. B. C. D.【分析】根據(jù)圓錐、球、圓柱及長(zhǎng)方體的定義即可作答.【解答】解:A.本圖形是圓錐,故不符合題意;B.本圖形是球,故不符合題意;C.本圖形是圓柱,故不符合題意;D.本圖形是長(zhǎng)方體,故符合題意.故選:D.【點(diǎn)評(píng)】本題主要考查認(rèn)識(shí)立體圖形,熟練掌握?qǐng)A錐、球、圓柱及長(zhǎng)方體的定義是解題的關(guān)鍵.4.(2024?鄒平市校級(jí)模擬)觀察下列實(shí)物模型,其整體形狀給我們以圓柱的形象的是()A. B. C. D.【分析】熟悉立體圖形的基本概念和特性即可解.【解答】解:A.此物體給我們以圓臺(tái)的形象,不符合題意;B.此物體給我們以長(zhǎng)方體的形象,不符合題意;C.此物體給我們以圓錐的形象,不符合題意;D.此物體給我們以圓柱的形象,符合題意;故選:D.【點(diǎn)評(píng)】本題主要考查認(rèn)識(shí)立體圖形,結(jié)合實(shí)物,認(rèn)識(shí)常見的立體圖形,如:長(zhǎng)方體、正方體、圓柱、圓錐、球、棱柱、棱錐等.能區(qū)分立體圖形與平面圖形,立體圖形占有一定空間,各部分不都在同一平面內(nèi).5.(2024?沅江市一模)觀察下列實(shí)物,抽象出的幾何圖形為長(zhǎng)方體的是()A. B. C. D.【分析】根據(jù)各選項(xiàng)中的實(shí)物所抽象出的幾何圖形逐一進(jìn)行判斷即可得出答案.【解答】解:選項(xiàng)A中的實(shí)物抽象出的幾何圖形為球,故選項(xiàng)A不符合題意;選項(xiàng)A中的實(shí)物抽象出的幾何圖形為長(zhǎng)方體,故選項(xiàng)B符合題意;選項(xiàng)C中的實(shí)物抽象出的幾何圖形為圓柱,故選項(xiàng)C不符合題意;選項(xiàng)D中的實(shí)物抽象出的幾何圖形為圓臺(tái),故選項(xiàng)D不符合題意,故選:B.【點(diǎn)評(píng)】此題主要考查了簡(jiǎn)單幾何體,準(zhǔn)確地識(shí)別球、長(zhǎng)方體、圓柱、圓臺(tái)是解決問題的關(guān)鍵.6.(2024?龍湖區(qū)校級(jí)一模)下列說法不正確的是()A.長(zhǎng)方體是四棱柱 B.八棱柱有16條棱 C.五棱柱有7個(gè)面 D.直棱柱的每個(gè)側(cè)面都是長(zhǎng)方形【分析】根據(jù)棱柱的特點(diǎn)可得答案.【解答】解:A、長(zhǎng)方體是四棱柱,選項(xiàng)說法正確,不符合題意;B、八棱柱有8×3=24條棱,選項(xiàng)說法錯(cuò)誤,符合題意;C、五棱柱有7個(gè)面,選項(xiàng)說法正確,不符合題意;D、直棱柱的每個(gè)側(cè)面都是長(zhǎng)方形,選項(xiàng)說法正確,不符合題意;故選:B.【點(diǎn)評(píng)】此題主要考查了認(rèn)識(shí)立體圖形,關(guān)鍵是認(rèn)識(shí)常見的立體圖形,掌握棱柱的特點(diǎn).7.(2023秋?臨海市期末)下列實(shí)物中,能抽象成圓柱體的是()A. B. C. D.【分析】根據(jù)常見幾何體的特征逐項(xiàng)判斷即可.【解答】解:A,抽象出來是六棱柱,不合題意;B,抽象出來是球,不合題意;C,抽象出來是圓柱,符合題意;D,抽象出來是圓錐,不合題意.故選:C.【點(diǎn)評(píng)】本題考查圓柱體的識(shí)別,掌握常見幾何體的特征是關(guān)鍵.8.(2024?大興區(qū)一模)下面幾何體中,是圓錐的為()A. B. C. D.【分析】觀察所給幾何體,可以直接得出答案.【解答】解:A選項(xiàng)為四棱柱,不符合題意;B選項(xiàng)為球,不符合題意;C選項(xiàng)為五棱錐,不符合題意;D選項(xiàng)為圓錐,符合題意.故選:D.【點(diǎn)評(píng)】本題主要考查了常見幾何體的識(shí)別,掌握常見幾何體的特征是解題的關(guān)鍵.9.(2023秋?儀征市期末)下列四個(gè)幾何體中,是四棱錐的是()A. B. C. D.【分析】根據(jù)四棱錐的形體特征進(jìn)行判斷即可.【解答】解:四棱錐是底面是四邊形的錐體,因此選項(xiàng)A中的幾何體符合題意,故選:A.【點(diǎn)評(píng)】本題考查認(rèn)識(shí)立體圖形,掌握各種幾何體的形體特征是正確判斷的前提.10.(2023秋?路橋區(qū)期末)下列圖形中,屬于棱柱的是()A. B. C. D.【分析】有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的多面體叫做棱柱,由此可選出答案.【解答】解:根據(jù)棱柱的定義可得:符合棱柱定義的只有B選項(xiàng).A選項(xiàng)屬于圓錐,C選項(xiàng)屬于圓柱,D選項(xiàng)屬于球體.故選:B.【點(diǎn)評(píng)】本題考查棱柱的定義,掌握柱體的基本概念是關(guān)鍵.題型二幾何體的構(gòu)成元素解題技巧提煉圖形的構(gòu)成元素:圖形是由點(diǎn)、線、面構(gòu)成的.面和面相交的地方形成線,線有直線和曲線之分.點(diǎn)無大小,線無粗細(xì),面無厚薄.1.(2024?七里河區(qū)校級(jí)開學(xué))下列說法中正確的是()A.正方體和長(zhǎng)方體是特殊的四棱柱,也是特殊的六面體 B.棱柱底面邊數(shù)和側(cè)面數(shù)不一定相等 C.棱柱的側(cè)面可能是三角形 D.長(zhǎng)方體是四棱柱,四棱柱是長(zhǎng)方體【分析】根據(jù)生活中常見的立體圖形的特征分別判斷各個(gè)選項(xiàng)中的說法是否正確即可.【解答】解:A.∵正方體和長(zhǎng)方體是特殊的四棱柱,共有六個(gè)面,∴也是特殊的六面體,故此選項(xiàng)的說法正確,故此選項(xiàng)符合題意;B.∵棱柱底面邊數(shù)和側(cè)面數(shù)相等,∴此選項(xiàng)的說法錯(cuò)誤,故此選項(xiàng)不符合題意;C.棱柱的側(cè)面是平行四邊形,∴此選項(xiàng)的說法錯(cuò)誤,故此選項(xiàng)不符合題意;D.∵長(zhǎng)方體是四棱柱,但四棱柱不一定是長(zhǎng)方體,∴此選項(xiàng)的說法錯(cuò)誤,故此選項(xiàng)不符合題意;故選:A.【點(diǎn)評(píng)】本題主要考查了立體圖形的認(rèn)識(shí),解題關(guān)鍵是熟練掌握棱柱的相關(guān)知識(shí).2.(2023秋?成武縣期末)如圖中的幾何體中,由4個(gè)面圍成的幾何體是()A. B. C. D.【分析】依據(jù)圖形逐個(gè)分析各個(gè)幾何體有幾個(gè)面,然后作出正確選擇.【解答】解:A是由5個(gè)面;B有三個(gè)面;C是四面體;D有三個(gè)面.故選C.【點(diǎn)評(píng)】本題主要考查對(duì)圖形的認(rèn)識(shí).3.(2024?龍湖區(qū)校級(jí)一模)下列說法不正確的是()A.長(zhǎng)方體是四棱柱;B.八棱柱有16條棱;C.五棱柱有7個(gè)面;D.直棱柱的每個(gè)側(cè)面都是長(zhǎng)方形.【分析】根據(jù)棱柱的特點(diǎn)可得答案.【解答】解:A、長(zhǎng)方體是四棱柱,選項(xiàng)說法正確,不符合題意;

B、八棱柱有8×3=24條棱,選項(xiàng)說法錯(cuò)誤,符合題意;

C、五棱柱有7個(gè)面,選項(xiàng)說法正確,不符合題意;

D、直棱柱的每個(gè)側(cè)面都是長(zhǎng)方形,選項(xiàng)說法正確,不符合題意;

故選:B.【點(diǎn)評(píng)】此題主要考查了認(rèn)識(shí)立體圖形,關(guān)鍵是認(rèn)識(shí)常見的立體圖形,掌握棱柱的特點(diǎn).4.觀察如圖所示的八個(gè)幾何體.(1)依次寫出這八個(gè)幾何體的名稱:①;②;③;④;⑤;⑥;⑦;⑧;(2)若幾何體按是否包含曲面分類:(填序號(hào)即可)不含曲面的有;含曲面的有.【分析】(1)根據(jù)幾何體的特點(diǎn)回答即可;(2)根據(jù)平面和曲面的區(qū)別回答即可.【解答】解:(1)①圓柱;②圓錐;③長(zhǎng)方體;④正方體;⑤四棱柱、⑥五棱柱、⑦球體;⑧三棱柱;故答案為:圓柱;圓錐;長(zhǎng)方體;正方體;四棱柱、五棱柱、球體;三棱柱.(2)不含曲面的有:③④⑤⑥⑧;含曲面的有:①②⑦;故答案為:③④⑤⑥⑧;①②⑦.【點(diǎn)評(píng)】本題主要考查的是認(rèn)識(shí)立體圖形,掌握常見幾何體的特點(diǎn)是解題的關(guān)鍵.5.如果一個(gè)棱柱(棱錐)有n條側(cè)棱,那么就稱其為n棱柱(棱錐).(1)圖①所示的幾何體是一個(gè)三棱柱,它有個(gè)頂點(diǎn),條棱,個(gè)面;(2)圖②所示的幾何體是,它有個(gè)頂點(diǎn),條側(cè)棱,個(gè)側(cè)面,個(gè)底面;(3)如果一個(gè)棱錐由7個(gè)面圍成,那么這個(gè)棱錐是幾棱錐,它共有幾條棱?【分析】n棱柱有n個(gè)側(cè)面,2個(gè)底面,3n條棱,2n個(gè)頂點(diǎn),n棱錐有n個(gè)側(cè)面,一個(gè)1底面,有2n條棱,有n+1個(gè)頂點(diǎn).【解答】解:(1)圖①所示的幾何體是一個(gè)三棱柱,它有6個(gè)頂點(diǎn),9條棱、5個(gè)面;故答案為:6;9;5;(2)圖②所示的幾何體是六棱柱,它有12個(gè)頂點(diǎn),6條側(cè)棱、6個(gè)側(cè)面、2個(gè)底面;故答案為:六,12,6、2;(3)如果一個(gè)棱錐由7個(gè)面圍成,那么這個(gè)棱錐是六棱錐,它共有12條棱.【點(diǎn)評(píng)】本題主要考查的是認(rèn)識(shí)立體圖形,明確n棱柱有n個(gè)側(cè)面,2個(gè)底面,3n條棱,2n個(gè)頂點(diǎn),n棱錐有n個(gè)側(cè)面,一個(gè)1底面,有2n條棱,有n+1個(gè)頂點(diǎn)是解題的關(guān)鍵.6.(2023秋?衡山縣期末)如圖,觀察下列幾何體并回答問題.(1)請(qǐng)觀察所給幾何體的面、棱、頂點(diǎn)的數(shù)量并歸納出n棱柱有個(gè)面,條棱,個(gè)頂點(diǎn),n棱錐有個(gè)面,條棱,個(gè)頂點(diǎn);(2)所有像三棱柱、四棱柱、六棱柱、三棱錐等這樣由四個(gè)或四個(gè)以上多邊形所圍成的立體圖形叫做多面體,經(jīng)過前人們歸納總結(jié)發(fā)現(xiàn),多面體的面數(shù)F,頂點(diǎn)個(gè)數(shù)V以及棱的條數(shù)E存在著一定的關(guān)系,請(qǐng)根據(jù)(1)總結(jié)出這個(gè)關(guān)系為.【分析】(1)觀察所給幾何體的面、棱、頂點(diǎn)的數(shù)量并歸納即可;(2)用表格分別列出三棱柱、四棱柱、五棱柱和六棱柱所對(duì)應(yīng)的頂點(diǎn)的個(gè)數(shù)、棱的條數(shù)和面的個(gè)數(shù),從而得到三者的關(guān)系為V+F﹣E=2.【解答】解:(1)觀察所給幾何體的面、棱、頂點(diǎn)的數(shù)量并歸納出n棱柱有(n+2)個(gè)面,3n條棱,2n個(gè)頂點(diǎn),n棱錐有(n+1)個(gè)面,2n條棱,(n+1)個(gè)頂點(diǎn);故答案為:(n+2),3n,2n,n,(n+1),2n,(n+1);(2)用表格分別列出三棱柱、四棱柱、五棱柱和六棱柱所對(duì)應(yīng)的頂點(diǎn)的個(gè)數(shù)、棱的條數(shù)和面的個(gè)數(shù),如圖:根據(jù)上表總結(jié)出這個(gè)關(guān)系為V+F﹣E=2.故答案為:V+F﹣E=2.【點(diǎn)評(píng)】本題考查幾何體的認(rèn)識(shí);能夠通過由特殊到一般的歸納,得到頂點(diǎn)個(gè)數(shù)、棱數(shù)、面數(shù)之間滿足的關(guān)系式是解題的關(guān)鍵.題型三幾何體的表面積解題技巧提煉幾何體的表面積,解題的關(guān)鍵從幾何體哪幾個(gè)面來計(jì)算出表面積.1.(2023秋?管城區(qū)月考)已知一個(gè)直棱柱共有12條棱,它的底面邊長(zhǎng)都是3cm,側(cè)棱長(zhǎng)都是6cm,則它的側(cè)面積是()cm2.A.108 B.96 C.72 D.18【分析】根據(jù)棱柱的形體特征判斷這個(gè)直棱柱是直四棱柱,再根據(jù)棱柱側(cè)面積的計(jì)算方法進(jìn)行計(jì)算即可.【解答】解:∵這個(gè)直棱柱共有12條棱,∴這個(gè)直棱柱是4棱柱,∵它的底面邊長(zhǎng)都是3cm,側(cè)棱長(zhǎng)都是6cm,∴這個(gè)四棱柱的底面邊長(zhǎng)為3cm,高為6cm,∴它的側(cè)面積是3×4×6=72(cm2),故選:C.【點(diǎn)評(píng)】本題考查認(rèn)識(shí)立體圖形,幾何體的表面積,掌握棱柱的形體特征以及四棱柱側(cè)面積的計(jì)算方法是正確解答的關(guān)鍵.2.(2023秋?三明期末)如圖所示的幾何體由棱長(zhǎng)均為1的小正方體組成,與該幾何體的表面積相同的是()A. B. C. D.【分析】根據(jù)幾何體的表面積由上下、前后、左右6個(gè)面組成,再根據(jù)題干中的幾何體的表面積為22來進(jìn)行選擇.【解答】解:∵題干中的幾何體的表面積為22,A中的幾何體表面積為20;B中的幾何體表面積為22;C中的幾何體表面積為24;D中的幾何體表面積為24,故選:B.【點(diǎn)評(píng)】本題考查了幾何體的表面積,解題的關(guān)鍵從幾何體的六個(gè)面來計(jì)算出表面積.3.(2024?市南區(qū)一模)如圖,用24塊棱長(zhǎng)分別為3cm,4cm,5cm的長(zhǎng)方體搭成一個(gè)大長(zhǎng)方體,其表面積最小為()A.748cm2 B.768cm2 C.788cm2 D.808cm2【分析】若要搭成的長(zhǎng)方體表面積最小,則依據(jù)把較大的面重疊在一起這一原則可解決問題.【解答】解:根據(jù)搭成的長(zhǎng)方體表面積最小的要求,遵循把較大面重疊在一起的原則,進(jìn)行如下搭建:將三塊長(zhǎng)方體按4cm,5cm面重疊得出一個(gè)大長(zhǎng)方體,此時(shí)三條棱長(zhǎng)為4cm,5cm,9cm.再用兩個(gè)大長(zhǎng)方體(即6個(gè)小長(zhǎng)方體)按5cm,9cm面重疊,可得棱長(zhǎng)為5cm,8cm,9cm的大長(zhǎng)方體.再用兩個(gè)大長(zhǎng)方體(即12個(gè)小長(zhǎng)方體)按8cm,9cm面重疊,可得棱長(zhǎng)為8cm,9cm,10cm的大長(zhǎng)方體.再用兩個(gè)大長(zhǎng)方體(即24個(gè)小長(zhǎng)方體)按9cm,10cm面重疊,可得棱長(zhǎng)為9cm,10cm,16cm的大長(zhǎng)方體.此時(shí)大長(zhǎng)方體的表面積為:2×(9×10+9×16+10×16)=788(cm2).將兩塊塊長(zhǎng)方體按4cm,5cm面重疊得出一個(gè)大長(zhǎng)方體,此時(shí)三條棱長(zhǎng)為4cm,5cm,6cm.再用三個(gè)大長(zhǎng)方體(即6個(gè)小長(zhǎng)方體)按5cm,6cm面重疊,可得棱長(zhǎng)為5cm,6cm,12cm的大長(zhǎng)方體.再用兩個(gè)大長(zhǎng)方體(即12個(gè)小長(zhǎng)方體)按6cm,12cm面重疊,可得棱長(zhǎng)為6cm,12cm,10cm的大長(zhǎng)方體.再用兩個(gè)大長(zhǎng)方體(即24個(gè)小長(zhǎng)方體)按10cm,12cm面重疊,可得棱長(zhǎng)為10cm,12cm,12cm的大長(zhǎng)方體.此時(shí)大長(zhǎng)方體的表面積為:2×(12×10+12×10+12×12)=768(cm2).因?yàn)?68<788,所以搭成大長(zhǎng)方體表面積的最小值為768cm2.故選:B.【點(diǎn)評(píng)】本題考查長(zhǎng)方體的表面積計(jì)算,熟知搭建過程中大面重疊,可是搭成的長(zhǎng)方體表面積最小是解決問題的關(guān)鍵.4.(2023秋?南海區(qū)校級(jí)月考)一個(gè)六棱柱模型如圖所示,它的底面邊長(zhǎng)都是5cm,側(cè)棱長(zhǎng)是4cm,該六棱柱的側(cè)面積之和是()cm2A.120 B.20 C.100 D.150【分析】六棱柱有六個(gè)側(cè)面,求出一個(gè)側(cè)面的面積再乘以6即可.【解答】解:5×4×6=120(cm2),∴六棱柱的側(cè)面積之和是120cm2.故選:A.【點(diǎn)評(píng)】本題考查了幾何體的表面積,熟練掌握立體圖形的特點(diǎn)是解本題的關(guān)鍵,難度不大,仔細(xì)審題即可.5.(2023秋?曲沃縣期末)如圖的零件是由兩個(gè)正方體焊接而成,已知大正方體和小正方體的體積分125cm3和27cm3,現(xiàn)要給這個(gè)零件的表面刷上油漆,那么所刷油漆的面積是()cm2.A.161 B.186 C.195 D.204【分析】先求出大正方體和小正方體的棱長(zhǎng),再求出零件的表面積即可求解.【解答】解:∵大正方體的體積為125cm3,小正方體的體積為27cm3,∴大正方體的棱長(zhǎng)為5cm,小正方體的棱長(zhǎng)為3cm,∴大正方體的每個(gè)表面的面積為25cm2,小正方體的每個(gè)表面的面積為9cm2,∴這個(gè)零件的表面積為:25×6+9×4=186(cm2),答:要給這個(gè)零件的表面刷上油漆,則所需刷油漆的面積為186cm2.故選:B.【點(diǎn)評(píng)】本題考查了幾何體的表面積,解題的關(guān)鍵是根據(jù)正方體的體積正確確定正方體的棱長(zhǎng).6.(2023秋?蒼南縣期末)小鑫正對(duì)相同的長(zhǎng)方體快遞盒進(jìn)行包裝,如圖1單個(gè)盒子的表面積為22dm2,如圖2三個(gè)盒子疊一起的表面積為42dm2,則如圖3四個(gè)盒子疊一起的表面積是()A.56dm2 B.64dm2 C.68dm2 D.88dm2【分析】根據(jù)圖1和圖2的表面積,可得出關(guān)于a,b,c的兩個(gè)等式,再用a,b,c表示出圖3的表面積,利用整體思想即可解決問題.【解答】解:由題知,因?yàn)閳D1的表面積為22dm2,所以2a+2b+2c=22(dm2),則a+b+c=11(dm2)①.因?yàn)閳D2的表面積為42dm2,所以6a+2b+6c=42(dm2),則3a+b+3c=21(dm2)②.由①②得,a+c=5(dm2),b=6(dm2).又因?yàn)閳D3的表面積可表示為4a+8b+4c,則4a+8b+4c=4(a+c)+8b=4×5+8×6=68(dm2).故選:C.【點(diǎn)評(píng)】本題考查幾何體的表面積,能用a,b,c表示出三個(gè)圖中幾何體的表面積及巧用整體思想是解題的關(guān)鍵.7.(2024?莒縣二模)如圖,某校國(guó)旗旗桿的底座由棱長(zhǎng)為1米的正方體磚砌成,現(xiàn)要把露出的表面漆成綠色,漆匠師傅報(bào)價(jià)是每平方米需成本及人工費(fèi)共8元,油漆完工后,應(yīng)付給漆匠師傅()A.152元 B.168元 C.264元 D.272元【分析】先分別求出每一層的表面積,相加求出總的表面積,再乘以單價(jià)即可求解.【解答】解:由圖可得,最上層側(cè)面積為4平方米,上表面面積為1平方米,總面積為4+1=5(平方米);中間一層側(cè)面積為2×4=8(平方米),上表面面積為4﹣1=3(平方米),總面積為8+3=11(平方米);最下層側(cè)面積為3×4=12(平方米),上表面面積為9﹣4=5(平方米),總面積為12+5=17(平方米);∴需要涂上顏色部分的面積為5+11+17=33(平方米);油漆完工后,應(yīng)付給漆匠師傅33×8=264(元),故選:C.【點(diǎn)評(píng)】本題考查的是組合幾何體的表面積和認(rèn)識(shí)立體圖形,正確求出幾何體的表面積是解題的關(guān)鍵8.(2023秋?洪山區(qū)期中)20個(gè)棱長(zhǎng)為acm的小正方體擺放成如圖的形狀,這個(gè)圖形的表面積是()A.100a2cm2 B.60a2cm2 C.30a2cm2 D.10a2cm2【分析】根據(jù)立體圖形的三視圖來解答即可.【解答】解:從正面和后面看,能看到1+2+3+4=10(個(gè))正方形,從左面和右面看,能看到1+2+3+4=10(個(gè))正方形,從上面和下面看,能看到1+2+3+4=10(個(gè))正方形,∴圖形的表面積為:(10+10+10)?a?a×2=60a2(cm2).故選:B.【點(diǎn)評(píng)】本題主要考查了幾何體的表面積,利用三視圖來求解是本題解題的關(guān)鍵.9.(2023秋?禪城區(qū)校級(jí)月考)將一個(gè)正方體的表面涂上顏色.如圖把正方體的棱2等分,然后沿等分線把正方體切開,能夠得到8個(gè)小正方體,通過觀察我們可以發(fā)現(xiàn)8個(gè)小正方體全是3個(gè)面涂有顏色的.如果把正方體的棱三等分,然后沿等分線把正方體切開,能夠得到27個(gè)小正方體,通過觀察我們可以發(fā)現(xiàn)這些小正方體中有8個(gè)是3個(gè)面涂有顏色的,有12個(gè)是2個(gè)面涂有顏色的,有6個(gè)是1個(gè)面涂有顏色的,還有1個(gè)各個(gè)面都沒有涂色.(1)如果把正方體的棱4等分,所得小正方體表面涂色情況如何呢?把正方體的棱n等分呢?(請(qǐng)?zhí)顚懴卤恚豪獾确謹(jǐn)?shù)4等分n等分3面涂色的正方體個(gè)個(gè)2面涂色的正方體個(gè)個(gè)1面涂色的正方體個(gè)個(gè)各個(gè)面都無涂色的正方體個(gè)個(gè)(2)將棱7等分時(shí),只有1個(gè)面涂色的小正方體的個(gè)數(shù)是,各個(gè)面都無涂色的正方體的個(gè)數(shù)是.【分析】(1)根據(jù)長(zhǎng)方體的分割規(guī)律可分別得到4等分時(shí)的所得小正方體表面涂色情況,由特殊推廣到一般即可得到n等分時(shí)所得小正方體表面涂色情況;(2)直接把n=7代入(1)中所得的規(guī)律中即可.【解答】解:(1)三面涂色8,8;二面涂色24,12(n﹣2),一面涂色24,6(n﹣2)2,各面均不涂色8,(n﹣2)3;故答案為:8,8;24,12(n﹣2);24,6(n﹣2)2;8,(n﹣2)3;(2)當(dāng)n=7時(shí),只有1個(gè)面涂色的小正方體的個(gè)數(shù)是6(n﹣2)2=6×(7﹣2)2=150,各個(gè)面都無涂色的正方體的個(gè)數(shù)是(n﹣2)3=(7﹣2)3=125,故答案為:150,125.【點(diǎn)評(píng)】主要考查了立體圖形的認(rèn)識(shí)和用特殊歸納一般規(guī)律的方法.關(guān)鍵是通過正方體的特點(diǎn)來得到有關(guān)涂色情況的規(guī)律.題型四點(diǎn)動(dòng)成線,線動(dòng)成面解題技巧提煉利用考查了點(diǎn)動(dòng)成線,線動(dòng)成面,理解點(diǎn)、線、面之間的關(guān)系是正確判斷的關(guān)鍵.1.(2023秋?高碑店市期末)天空劃過一道流星,這個(gè)過程可用哪個(gè)數(shù)學(xué)原理來解釋()A.點(diǎn)動(dòng)成線 B.線動(dòng)成面 C.面動(dòng)成體 D.以上答案都正確【分析】把流星看作是一個(gè)點(diǎn),根據(jù)點(diǎn)動(dòng)成線可得出答案.【解答】解:把流星看作是一個(gè)點(diǎn),則天空劃過一道流星是點(diǎn)動(dòng)成線.故選:A.【點(diǎn)評(píng)】此題主要考查了點(diǎn)動(dòng)成線,把流星看作是一個(gè)點(diǎn),理解點(diǎn)動(dòng)成線是解決問題的關(guān)鍵.2.(2023秋?貴陽期末)“力箭一號(hào)”(ZK﹣1A)運(yùn)載火箭在酒泉衛(wèi)星發(fā)射中心采用“一箭六星”的方式,成功將六顆衛(wèi)星送入預(yù)定軌道,首次飛行任務(wù)取得圓滿成功.把衛(wèi)星看成點(diǎn),則衛(wèi)星在預(yù)定軌道飛行留下的痕跡體現(xiàn)了()A.點(diǎn)動(dòng)成線 B.線動(dòng)成面 C.面動(dòng)成體 D.面面相交成線【分析】根據(jù)點(diǎn)動(dòng)成線進(jìn)行判斷即可.【解答】解:把衛(wèi)星看成點(diǎn),衛(wèi)星在預(yù)定軌道飛行留下的痕跡體現(xiàn)了點(diǎn)動(dòng)成線,故選:A.【點(diǎn)評(píng)】本題考查點(diǎn)、線、面、體,理解“點(diǎn)動(dòng)成線”是正確判斷的前提.3.(2023秋?臺(tái)江區(qū)校級(jí)期末)轉(zhuǎn)動(dòng)自行車的輪子,輪子上的輻條會(huì)形成一個(gè)圓面,用數(shù)學(xué)知識(shí)可以解釋為()A.點(diǎn)動(dòng)成線 B.線動(dòng)成面 C.面動(dòng)成體 D.面與面相交成線【分析】根據(jù)“線動(dòng)成面”進(jìn)行判斷即可.【解答】解:輪子上的輻條可以近似的看作“線段”,輪子轉(zhuǎn)動(dòng)輪子上的輻條會(huì)形成一個(gè)圓面,就形成“線動(dòng)成面”,故選:B.【點(diǎn)評(píng)】本題考查點(diǎn)、線、面、體,理解點(diǎn)、線、面、體之間的關(guān)系是正確判斷的關(guān)鍵.4.(2023秋?金平區(qū)期末)車輪上的輻條旋轉(zhuǎn)起來形成一個(gè)圓面,用數(shù)學(xué)知識(shí)解釋為()A.點(diǎn)動(dòng)成線 B.線動(dòng)成面 C.面動(dòng)成體 D.以上都不對(duì)【分析】根據(jù)“線動(dòng)成面”進(jìn)行判斷即可.【解答】解:輪子上的輻條可以近似的看作“線段”,車輪上的輻條旋轉(zhuǎn)起來形成一個(gè)圓面,用數(shù)學(xué)知識(shí)解釋為“線動(dòng)成面”.故選:B.【點(diǎn)評(píng)】本題考查點(diǎn)、線、面、體,理解點(diǎn)、線、面、體之間的關(guān)系是正確判斷的關(guān)鍵.5.(2023秋?德州期末)朱自清的《春》一文里,在描寫春雨時(shí)有“像牛毛,像細(xì)絲,密密地斜織著”的語句,這里用數(shù)學(xué)的眼光來看其實(shí)是把雨滴看成了(),把雨看成(),說明()A.點(diǎn);直線;點(diǎn)動(dòng)成線 B.點(diǎn);線;點(diǎn)動(dòng)成線 C.線;面;線動(dòng)成面 D.線;面;面動(dòng)成體【分析】根據(jù)點(diǎn)動(dòng)成線直接判斷即可得到答案.【解答】解:由題意可得,這里用數(shù)學(xué)的眼光來看其實(shí)是把雨滴看成了點(diǎn),把雨看成線,說明點(diǎn)動(dòng)成線,故選:B.【點(diǎn)評(píng)】本題考查點(diǎn)動(dòng)成線,正確記憶相關(guān)內(nèi)容是解題關(guān)鍵.6.(2023秋?潮南區(qū)期末)幾何圖形都是由點(diǎn)、線、面、體組成的,點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體,下列生活現(xiàn)象中可以反映“點(diǎn)動(dòng)成線”的是()A.流星劃過夜空 B.打開折扇 C.汽車雨刷的轉(zhuǎn)動(dòng) D.旋轉(zhuǎn)門的旋轉(zhuǎn)【分析】根據(jù)從運(yùn)動(dòng)的觀點(diǎn)來看點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體可得答案.【解答】解:A、流星劃過夜空,屬于點(diǎn)動(dòng)成線,本選項(xiàng)符合題意.B、打開折扇,屬于線動(dòng)成面,本選項(xiàng)不符合題意.C、汽車雨刷的轉(zhuǎn)動(dòng),屬于線動(dòng)成面,本選項(xiàng)不符合題意.D、旋轉(zhuǎn)門的旋轉(zhuǎn),屬于面動(dòng)成體,本選項(xiàng)不符合題意,故選:A.【點(diǎn)評(píng)】此題主要考查了點(diǎn)、線、面、體,關(guān)鍵是掌握四者之間的關(guān)系.題型五面動(dòng)成體解題技巧提煉一般地,含有曲面的幾何體,都可以看成由某一平面圖形繞著某一旋轉(zhuǎn)軸旋轉(zhuǎn)一定的角度得到.旋轉(zhuǎn)軸或旋轉(zhuǎn)角度不同,所得到的幾何體不一定相同.1.(2024?陜西)如圖,將半圓繞直徑所在的虛線旋轉(zhuǎn)一周,得到的立體圖形是()A. B. C. D.【分析】根據(jù)面動(dòng)成體,圖形繞直線旋轉(zhuǎn)是球.【解答】解:如圖,將半圓繞直徑所在的虛線旋轉(zhuǎn)一周,得到的立體圖形是球.故選:C.【點(diǎn)評(píng)】此題考查點(diǎn)、線、面、體的問題,解決本題的關(guān)鍵是得到所求的平面圖形是得到幾何體的主視圖的被縱向分成的一半.2.(2023秋?赤坎區(qū)校級(jí)期末)下列圖形繞虛線旋轉(zhuǎn)一周,能形成圓柱體的是()A. B. C. D.【分析】根據(jù)“面動(dòng)成體”的特征進(jìn)行判斷即可.【解答】解:矩形繞著一條邊所在的直線旋轉(zhuǎn)一周,所得到的幾何體是圓柱體,故選:B.【點(diǎn)評(píng)】本題考查點(diǎn)、線、面、體,理解“面動(dòng)成體”是正確判斷的前提.3.(2024?九龍坡區(qū)自主招生)將如圖所示的平面圖形繞直線旋轉(zhuǎn)一周,可得到的立體圖形是()A. B. C. D.【分析】直角三角形繞一條直角邊旋轉(zhuǎn)一周,得到的立體圖形是圓錐.【解答】解:直角三角形繞一條直角邊旋轉(zhuǎn)一周,可得到的立體圖形是圓錐.故選:C.【點(diǎn)評(píng)】本題主要考查點(diǎn)、線、面、體,熟練掌握點(diǎn)、線、面、體直角的關(guān)系是解題的關(guān)鍵.4.(2024?合陽縣二模)下列圖形分別繞虛線旋轉(zhuǎn)一周,得到的立體圖形是圓錐的是()A. B. C. D.【分析】根據(jù)選項(xiàng)逐項(xiàng)分析判斷即可求解.【解答】解:A.繞直線l旋轉(zhuǎn)后得到的圖形為一個(gè)球體,不符合題意;B.選項(xiàng)中的圖形旋轉(zhuǎn)后為圓柱,不符合題意;C.可得其旋轉(zhuǎn)后的幾何體為圓錐,符合題意;D.可知其繞直線l旋轉(zhuǎn)后得到的圖形為一個(gè)圓臺(tái),不符合題意.故選:C.【點(diǎn)評(píng)】本題考查了點(diǎn)、線、面、體,理解“點(diǎn)動(dòng)成線”“線動(dòng)成面”“面動(dòng)成體”是解題的關(guān)鍵.5.(2023秋?倉(cāng)山區(qū)期末)如圖所示的圖形繞虛線旋轉(zhuǎn)一周,所形成的幾何體是()A. B. C. D.【分析】根據(jù)旋轉(zhuǎn)體的定義,直角梯形繞它的一腰(與兩底垂直的一邊)旋轉(zhuǎn)一周形成圓臺(tái),可得答案.【解答】解:如圖所示的圖形繞虛線旋轉(zhuǎn)一周,所形成的幾何體是圓臺(tái).故選:C.【點(diǎn)評(píng)】本題主要考查了點(diǎn)、線、面、體,熟練掌握立體圖形的特征是解決本題的關(guān)鍵.6.(2023秋?坡頭區(qū)期末)將如圖中的圖形繞虛線旋轉(zhuǎn)一周,形成的幾何體是()A. B. C. D.【分析】根據(jù)“面動(dòng)成體”可得答案.【解答】解:根據(jù)“面動(dòng)成體”可得,旋轉(zhuǎn)后的幾何體為兩端略粗,中間稍細(xì)的幾何體,因此選項(xiàng)B中的幾何體符合題意,故選:B.【點(diǎn)評(píng)】本題考查“面動(dòng)成體”,理解點(diǎn)、線、面、體的關(guān)系是正確判斷的前提.7.(2023秋?玉環(huán)市期末)汽車的雨刷在擋風(fēng)玻璃上畫出了一個(gè)扇面,這說明了()A.點(diǎn)動(dòng)成線 B.線動(dòng)成面 C.面動(dòng)成體 D.以上都不正確【分析】可將汽車的雨刷看成一條線,雨刷在刷玻璃上的雨水時(shí)形成了面,所以屬于線動(dòng)成面的實(shí)際應(yīng)用.【解答】解:汽車的雨刷在擋風(fēng)玻璃上畫出了一個(gè)扇面,這說明線動(dòng)成面,故選:B.【點(diǎn)評(píng)】本題考查點(diǎn)、線、面、體的關(guān)系,靈活運(yùn)用點(diǎn)、線、面、體知識(shí)點(diǎn)進(jìn)行解題是本題的重點(diǎn).8.(2023秋?永州期末)下列平面圖形分別繞直線l旋轉(zhuǎn)一周,得到的幾何體是球體的是()A. B. C. D.【分析】分別求出各選項(xiàng)繞直線l旋轉(zhuǎn)一周得到的幾何體即可得出答案.【解答】解:對(duì)于選項(xiàng)A,繞直線l旋轉(zhuǎn)一周得到的幾何體是圓臺(tái),故選項(xiàng)A不符合題意;對(duì)于選項(xiàng)B,繞直線l旋轉(zhuǎn)一周得到的幾何體是球體,故選項(xiàng)B符合題意;對(duì)于選項(xiàng)C,繞直線l旋轉(zhuǎn)一周得到的幾何體是圓錐,故選項(xiàng)C不符合題意;對(duì)于選項(xiàng)D,繞直線l旋轉(zhuǎn)一周得到的幾何體是圓柱,故選項(xiàng)D不符合題意.故選:B.【點(diǎn)評(píng)】此題主要考查了平面圖形的旋轉(zhuǎn),理解圓臺(tái),球、圓錐、圓柱的概念是解決問題的關(guān)鍵.9.(2024?峰峰礦區(qū)校級(jí)模擬)如圖所示的花瓶中,其表面可以看作由如圖的平面圖形繞虛線旋轉(zhuǎn)一周形成的是()A. B. C. D.【分析】面動(dòng)成體.由題目中的圖示可知:此圖形旋轉(zhuǎn)可成脖子長(zhǎng)有口的瓶子.【解答】解:B、是可由所給圖形旋轉(zhuǎn)而成的瓶型,故B正確;故選:B.【點(diǎn)評(píng)】本題考查了面動(dòng)成體,通過免得特征推斷體的形狀熟練掌握即可解題.10.(2023秋?西華縣期末)如圖的圖形繞虛線旋轉(zhuǎn)一周,可以得到的幾何體是()A. B. C. D.【分析】根據(jù)圓柱和圓錐的特征,即可解答.【解答】解:如圖的圖形繞虛線旋轉(zhuǎn)一周,可以得到的幾何體是,故選:C.【點(diǎn)評(píng)】本題考查了點(diǎn)、線、面、體,熟練掌握?qǐng)A柱和圓錐的特征是解題的關(guān)鍵.題型六常見幾何體的體積計(jì)算解題技巧提煉根據(jù)旋轉(zhuǎn)得出幾何體,然后利用常見的幾何體的體積公式計(jì)算即可求解.1.(2023秋?微山縣期末)分別以直角梯形(如圖所示)的下底和上底為軸,將梯形旋轉(zhuǎn)一周得到A,B兩個(gè)立體圖形.則A,B兩個(gè)立體圖形的體積之比是()A.1:1 B.1:2 C.4:5 D.5:4【分析】分別求出幾何體A,幾何體B的體積,再進(jìn)行判斷即可.【解答】解:幾何體A的體積為π×22×2+13π×22×(4﹣2)=8π幾何體B的體積為π×22×4-13π×22×(4﹣2)=16π所以幾何體A與幾何體B的體積比為4:5.故選:C.【點(diǎn)評(píng)】本題考查點(diǎn)、線、面、體,掌握?qǐng)A柱體、圓錐體體積的計(jì)算方法是正確解答的關(guān)鍵.2.(2022秋?新泰市期末)現(xiàn)有一個(gè)長(zhǎng)方形,寬和長(zhǎng)分別為4cm和5cm,繞它的一條邊所在的直線旋轉(zhuǎn)一周,得到的幾何體的體積為()A.80πcm3 B.100πcm3 C.80πcm3或100πcm3 D.64πcm3或125πcm3【分析】以不同的邊為軸旋轉(zhuǎn)一周,所得到的圓柱體的底面半徑和高,根據(jù)圓柱體體積的計(jì)算方法進(jìn)行計(jì)算即可.【解答】解:繞著4cm的邊為軸,旋轉(zhuǎn)一周所得到的是底面半徑為5cm,高為4cm的圓柱體,因此體積為π×52×4=100π(cm3);繞著5cm的邊為軸,旋轉(zhuǎn)一周所得到的是底面半徑為4cm,高為5cm的圓柱體,因此體積為π×42×5=80π(cm3),故選:C.【點(diǎn)評(píng)】本題考查點(diǎn)、線、面、體,掌握?qǐng)A柱體體積的計(jì)算方法是正確解答的前提,以不同的邊為軸旋轉(zhuǎn)得到的圓柱體的底面半徑和高是正確計(jì)算的關(guān)鍵.3.(2024?閻良區(qū)校級(jí)二模)如圖,某酒店大堂的旋轉(zhuǎn)門內(nèi)部由三塊寬為1.8m、高為3m的玻璃隔板組成.(1)將此旋轉(zhuǎn)門旋轉(zhuǎn)一周,能形成的幾何體是,這能說明的事實(shí)是(填字母);A.點(diǎn)動(dòng)成線B.線動(dòng)成面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論