![2025屆甘肅省示范名校高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第1頁](http://file4.renrendoc.com/view14/M01/19/11/wKhkGWdZkoqAWG8dAAIaNe6beeo310.jpg)
![2025屆甘肅省示范名校高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第2頁](http://file4.renrendoc.com/view14/M01/19/11/wKhkGWdZkoqAWG8dAAIaNe6beeo3102.jpg)
![2025屆甘肅省示范名校高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第3頁](http://file4.renrendoc.com/view14/M01/19/11/wKhkGWdZkoqAWG8dAAIaNe6beeo3103.jpg)
![2025屆甘肅省示范名校高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第4頁](http://file4.renrendoc.com/view14/M01/19/11/wKhkGWdZkoqAWG8dAAIaNe6beeo3104.jpg)
![2025屆甘肅省示范名校高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第5頁](http://file4.renrendoc.com/view14/M01/19/11/wKhkGWdZkoqAWG8dAAIaNe6beeo3105.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆甘肅省示范名校高考數(shù)學(xué)考前最后一卷預(yù)測卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.2.若集合,則()A. B.C. D.3.對于函數(shù),定義滿足的實(shí)數(shù)為的不動(dòng)點(diǎn),設(shè),其中且,若有且僅有一個(gè)不動(dòng)點(diǎn),則的取值范圍是()A.或 B.C.或 D.4.已知是第二象限的角,,則()A. B. C. D.5.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.116.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.07.某工廠只生產(chǎn)口罩、抽紙和棉簽,如圖是該工廠年至年各產(chǎn)量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產(chǎn)量分別占、、),根據(jù)該圖,以下結(jié)論一定正確的是()A.年該工廠的棉簽產(chǎn)量最少B.這三年中每年抽紙的產(chǎn)量相差不明顯C.三年累計(jì)下來產(chǎn)量最多的是口罩D.口罩的產(chǎn)量逐年增加8.若函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.9.若集合,則=()A. B. C. D.10.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為()(注:)A.1624 B.1024 C.1198 D.156011.函數(shù)圖象的大致形狀是()A. B.C. D.12.雙曲線的右焦點(diǎn)為,過點(diǎn)且與軸垂直的直線交兩漸近線于兩點(diǎn),與雙曲線的其中一個(gè)交點(diǎn)為,若,且,則該雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內(nèi)投入一質(zhì)點(diǎn),質(zhì)點(diǎn)落入陰影部分的概率是_____________14.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點(diǎn),若點(diǎn)的坐標(biāo)為,則的取值范圍為__________.15.已知向量,且向量與的夾角為_______.16.雙曲線的離心率為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右頂點(diǎn)為,為上頂點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn).(1)若,求直線與軸的交點(diǎn)坐標(biāo);(2)設(shè)為橢圓的右焦點(diǎn),過點(diǎn)與軸垂直的直線為,的中點(diǎn)為,過點(diǎn)作直線的垂線,垂足為,求證:直線與直線的交點(diǎn)在橢圓上.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點(diǎn),將射線繞極點(diǎn)逆時(shí)針方向旋轉(zhuǎn)交曲線于點(diǎn).(1)求曲線的參數(shù)方程;(2)求面積的最大值.19.(12分)2019年6月,國內(nèi)的運(yùn)營牌照開始發(fā)放.從到,我們國家的移動(dòng)通信業(yè)務(wù)用了不到20年的時(shí)間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對的消費(fèi)意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計(jì)升級到的時(shí)段人數(shù)早期體驗(yàn)用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學(xué)生升級時(shí)間的早晚與大學(xué)生愿意為套餐支付更多的費(fèi)用作比較,可得出下圖的關(guān)系(例如早期體驗(yàn)用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗(yàn)用戶的).(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗(yàn)用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐,能否認(rèn)為樣本中早期體驗(yàn)用戶的人數(shù)有變化?說明理由.20.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若不等式恒成立,求實(shí)數(shù)a的取值范圍.21.(12分)如圖,在正三棱柱中,,,分別為,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.22.(10分)班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機(jī)抽取一個(gè)容量為7的樣本進(jìn)行分析.(1)如果按照性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(寫出算式即可,不必計(jì)算出結(jié)果)(2)如果隨機(jī)抽取的7名同學(xué)的數(shù)學(xué),物理成績(單位:分)對應(yīng)如下表:學(xué)生序號1234567數(shù)學(xué)成績60657075858790物理成績70778085908693①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望;②根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學(xué)成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學(xué)的數(shù)學(xué)成績?yōu)?6分,預(yù)測該同學(xué)的物理成績?yōu)槎嗌俜??附:線性回歸方程,其中,.7683812526
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.2、A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查求集合的交集運(yùn)算,掌握交集定義是解題關(guān)鍵.3、C【解析】
根據(jù)不動(dòng)點(diǎn)的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時(shí),,則在內(nèi)單調(diào)遞增;當(dāng)時(shí),,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個(gè)不動(dòng)點(diǎn),可得得或,解得或.故選:C【點(diǎn)睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.4、D【解析】
利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因?yàn)?由誘導(dǎo)公式可得,,即,因?yàn)?所以,由二倍角的正弦公式可得,,所以.故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運(yùn)算求解能力和知識的綜合運(yùn)用能力;屬于中檔題.5、A【解析】
根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時(shí)候?yàn)檫^點(diǎn)的時(shí)候,解得所以,此時(shí)故選A項(xiàng)【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡單題.6、D【解析】分析:因?yàn)轭}設(shè)中給出了的值,要求的值,故應(yīng)考慮兩者之間滿足的關(guān)系.詳解:由題設(shè)有,故有,所以,從而,故選D.點(diǎn)睛:本題考查函數(shù)的表示方法,解題時(shí)注意根據(jù)問題的條件和求解的結(jié)論之間的關(guān)系去尋找函數(shù)的解析式要滿足的關(guān)系.7、C【解析】
根據(jù)該廠每年產(chǎn)量未知可判斷A、B、D選項(xiàng)的正誤,根據(jù)每年口罩在該廠的產(chǎn)量中所占的比重最大可判斷C選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】由于該工廠年至年的產(chǎn)量未知,所以,從年至年棉簽產(chǎn)量、抽紙產(chǎn)量以及口罩產(chǎn)量的變化無法比較,故A、B、D選項(xiàng)錯(cuò)誤;由堆積圖可知,從年至年,該工廠生產(chǎn)的口罩占該工廠的總產(chǎn)量的比重是最大的,則三年累計(jì)下來產(chǎn)量最多的是口罩,C選項(xiàng)正確.故選:C.【點(diǎn)睛】本題考查堆積圖的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.8、C【解析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當(dāng)最大時(shí),,求得,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.9、C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.10、B【解析】
根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項(xiàng)公式和前項(xiàng)和,利用累加法求得數(shù)列的通項(xiàng)公式,進(jìn)而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項(xiàng)和為,又令,設(shè)的前項(xiàng)和為.易,,進(jìn)而得,所以,則,所以,所以.故選:B【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查累加法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.11、B【解析】
判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因?yàn)?,所以,所以函?shù)是奇函數(shù),可排除A、C;又當(dāng),,可排除D;故選:B.【點(diǎn)睛】本題考查函數(shù)表達(dá)式判斷函數(shù)圖像,屬于中檔題.12、D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因?yàn)?,即可得到,故選:D.【點(diǎn)睛】本題主要考查的是雙曲線的簡單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線的離心率或范圍,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
聯(lián)立直線與拋物線方程求出交點(diǎn)坐標(biāo),再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據(jù)幾何概型的概率公式計(jì)算可得;【詳解】解:聯(lián)立解得或,即,,,,,故答案為:【點(diǎn)睛】本題考查幾何概型的概率公式的應(yīng)用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.14、【解析】
由正弦定理可得點(diǎn)在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點(diǎn)在曲線上,設(shè),則,,又,,因?yàn)?,則,即的取值范圍為.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查學(xué)生計(jì)算能力,有一定的綜合性,但難度不大.15、1【解析】
根據(jù)向量數(shù)量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的定義,屬于基礎(chǔ)題.16、2【解析】三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)直接求出直線方程,與橢圓方程聯(lián)立求出點(diǎn)坐標(biāo),從而可得直線方程,得其與軸交點(diǎn)坐標(biāo);(2)設(shè),則,求出直線和的方程,從而求得兩直線的交點(diǎn)坐標(biāo),證明此交點(diǎn)在橢圓上,即此點(diǎn)坐標(biāo)適合橢圓方程.代入驗(yàn)證即可.注意分和說明.【詳解】解:本題考查直線與橢圓的位置關(guān)系的綜合,(1)由題知,,則.因?yàn)椋?,則直線的方程為,聯(lián)立,可得故.則,直線的方程為.令,得,故直線與軸的交點(diǎn)坐標(biāo)為.(2)證明:因?yàn)?,,所以.設(shè)點(diǎn),則.設(shè)當(dāng)時(shí),設(shè),則,此時(shí)直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點(diǎn)為,顯然在橢圓上.同理當(dāng)時(shí),交點(diǎn)也在橢圓上.當(dāng)時(shí),可設(shè)直線的方程為,即.直線的方程為,聯(lián)立方程,消去得,化簡并解得.將代入中,化簡得.所以兩直線的交點(diǎn)為.因?yàn)?,又因?yàn)椋?,則,所以點(diǎn)在橢圓上.綜上所述,直線與直線的交點(diǎn)在橢圓上.【點(diǎn)睛】本題考查直線與橢圓相交問題,解題方法是解析幾何的基本方程,求出直線方程,解方程組求出交點(diǎn)坐標(biāo),代入曲線方程驗(yàn)證點(diǎn)在曲線.本題考查了學(xué)生的運(yùn)算求解能力.18、(1)(為參數(shù));(2).【解析】
(1)根據(jù)伸縮變換結(jié)合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標(biāo)方程,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程,得出和關(guān)于的表達(dá)式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標(biāo)方程得,即,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程得,,的面積為,當(dāng)時(shí),的面積取到最大值.【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程的互化,考查了伸縮變換,同時(shí)也考查了利用極坐標(biāo)方程求解三角形面積的最值問題,要熟悉極坐標(biāo)方程所適用的基本類型,考查分析問題和解決問題的能力,屬于中等題.19、(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒有發(fā)生變化,詳見解析【解析】
(1)由從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級到,結(jié)合古典摡型的概率計(jì)算公式,即可求解;(2)由題意的所有可能值為,利用相互獨(dú)立事件的概率計(jì)算公式,分別求得相應(yīng)的概率,得到隨機(jī)變量的分布列,利用期望的公式,即可求解.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,得到七概率為,即可得到結(jié)論.【詳解】(1)由題意可知,從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級到的概率估計(jì)為樣本中早期體驗(yàn)用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗(yàn)用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,由題意可知,事件,相互獨(dú)立,且,,所以,,,所以的分布列為0120.180.490.33故的數(shù)學(xué)期望.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認(rèn)為早期體驗(yàn)用戶人數(shù)增加.【點(diǎn)睛】本題主要考查了離散型隨機(jī)變量的分布列,數(shù)學(xué)期望的求解及應(yīng)用,對于求離散型隨機(jī)變量概率分布列問題首先要清楚離散型隨機(jī)變量的可能取值,計(jì)算得出概率,列出離散型隨機(jī)變量概率分布列,最后按照數(shù)學(xué)期望公式計(jì)算出數(shù)學(xué)期望,其中列出離散型隨機(jī)變量概率分布列及計(jì)算數(shù)學(xué)期望是理科高考數(shù)學(xué)必考問題.20、(1)(2)【解析】
(1)利用分段討論法去掉絕對值,結(jié)合圖象,從而求得不等式的解集;(2)求出函數(shù)的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當(dāng)時(shí),則所以不等式的解集為.(2)等價(jià)于,而,故等價(jià)于,所以或,即或,所以實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查含有絕對值的不等式解法、不等式恒成立問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運(yùn)算求解能力,難
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《義務(wù)教育法》知識考試復(fù)習(xí)題庫(含答案)
- (技師)化學(xué)檢驗(yàn)工職業(yè)技能鑒定理論考試題庫(含答案)
- 年產(chǎn)1000噸納米復(fù)合氧化鋯項(xiàng)目可行性研究報(bào)告寫作模板-申批備案
- 2025年江西外語外貿(mào)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年新疆工業(yè)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 幼兒園月亮故事活動(dòng)策劃方案五篇
- 標(biāo)線承包合同范本
- 精準(zhǔn)醫(yī)療項(xiàng)目研發(fā)合作合同
- 麻雀的聽評課記錄
- 承攬貨物運(yùn)輸合同范本
- 房地產(chǎn)調(diào)控政策解讀
- 產(chǎn)前診斷室護(hù)理工作總結(jié)
- 2024-2025學(xué)年八年級數(shù)學(xué)人教版上冊寒假作業(yè)(綜合復(fù)習(xí)能力提升篇)(含答案)
- 《AP內(nèi)容介紹》課件
- 醫(yī)生定期考核簡易程序述職報(bào)告范文(10篇)
- 安全創(chuàng)新創(chuàng)效
- 《中國糖尿病防治指南(2024版)》更新要點(diǎn)解讀
- 初級創(chuàng)傷救治課件
- 2024年社會工作者(中級)-社會綜合能力考試歷年真題可打印
- 《處理人際關(guān)系》課件
- 五年級行程問題應(yīng)用題100道
評論
0/150
提交評論