2025屆吉林省長春市七中高三第六次模擬考試數(shù)學試卷含解析_第1頁
2025屆吉林省長春市七中高三第六次模擬考試數(shù)學試卷含解析_第2頁
2025屆吉林省長春市七中高三第六次模擬考試數(shù)學試卷含解析_第3頁
2025屆吉林省長春市七中高三第六次模擬考試數(shù)學試卷含解析_第4頁
2025屆吉林省長春市七中高三第六次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆吉林省長春市七中高三第六次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直角中,,,,若,則()A. B. C. D.2.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}3.已知集合,則=()A. B. C. D.4.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,5.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準線上的投影分別是M,N,若,則的值是()A. B. C. D.6.已知函數(shù),,若對任意的,存在實數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.57.已知函數(shù),若關于的方程有4個不同的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.8.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.9.復數(shù)(為虛數(shù)單位),則的共軛復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.函數(shù)的部分圖像大致為()A. B.C. D.11.若復數(shù)在復平面內(nèi)對應的點在第二象限,則實數(shù)的取值范圍是()A. B. C. D.12.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.5050二、填空題:本題共4小題,每小題5分,共20分。13.用數(shù)字、、、、、組成無重復數(shù)字的位自然數(shù),其中相鄰兩個數(shù)字奇偶性不同的有_____個.14.實數(shù),滿足約束條件,則的最大值為__________.15.設平面向量與的夾角為,且,,則的取值范圍為______.16.設(其中為自然對數(shù)的底數(shù)),,若函數(shù)恰有4個不同的零點,則實數(shù)的取值范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.18.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大小;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),,求的值.19.(12分)已知.(1)當時,求不等式的解集;(2)若時不等式成立,求的取值范圍.20.(12分)已知等差數(shù)列的前n項和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)已知,求數(shù)列的前n項和.21.(12分)設函數(shù),,其中,為正實數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;(2)設,證明:對任意,都有.22.(10分)在平面直角坐標系xOy中,曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的極坐標方程;(2)設和交點的交點為,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,

,

若,則故選C.【點睛】本題考查向量的加減運算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.2、C【解析】

根據(jù)集合的并集、補集的概念,可得結果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點睛】本題考查的是集合并集,補集的概念,屬基礎題.3、D【解析】

先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎題.4、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數(shù)z=x+2y經(jīng)過C點時,函數(shù)取得最小值,由解得C(2,1),目標函數(shù)的最小值為:4目標函數(shù)的范圍是[4,+∞).故選D.5、C【解析】

直線恒過定點,由此推導出,由此能求出點的坐標,從而能求出的值.【詳解】設拋物線的準線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標為,∴點B的坐標為,把代入直線,解得,故選:C.【點睛】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時要注意等價轉(zhuǎn)化思想的合理運用,屬于中檔題.6、A【解析】

根據(jù)條件將問題轉(zhuǎn)化為,對于恒成立,然后構造函數(shù),然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數(shù)滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調(diào)遞減;當時,,單調(diào)遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性,零點存在定理和不等式恒成立問題,考查了轉(zhuǎn)化思想,屬于難題.7、C【解析】

求導,先求出在單增,在單減,且知設,則方程有4個不同的實數(shù)根等價于方程在上有兩個不同的實數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當時,,當,,且,故方程在上有兩個不同的實數(shù)根,故,解得.故選:C.【點睛】本題考查確定函數(shù)零點或方程根個數(shù).其方法:(1)構造法:構造函數(shù)(易求,可解),轉(zhuǎn)化為確定的零點個數(shù)問題求解,利用導數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數(shù)形結合求解;(2)定理法:先用零點存在性定理判斷函數(shù)在某區(qū)間上有零點,然后利用導數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點值符號,進而判斷函數(shù)在該區(qū)間上零點的個數(shù).8、D【解析】

構造函數(shù),,利用導數(shù)分析出這兩個函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結合函數(shù)的單調(diào)性推導出或,再利用余弦函數(shù)的單調(diào)性可得出結論.【詳解】構造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當時,則,;當時,,.由得.①若,則,即,不合乎題意;②若,則,則,此時,,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時,由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.【點睛】本題考查函數(shù)單調(diào)性的應用,構造新函數(shù)是解本題的關鍵,解題時要注意對的取值范圍進行分類討論,考查推理能力,屬于中等題.9、C【解析】

由復數(shù)除法求出,寫出共軛復數(shù),寫出共軛復數(shù)對應點坐標即得【詳解】解析:,,對應點為,在第三象限.故選:C.【點睛】本題考查復數(shù)的除法運算,共軛復數(shù)的概念,復數(shù)的幾何意義.掌握復數(shù)除法法則是解題關鍵.10、A【解析】

根據(jù)函數(shù)解析式,可知的定義域為,通過定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數(shù),圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數(shù)解析式識別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進行排除.11、B【解析】

復數(shù),在復平面內(nèi)對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【點睛】本題考查了復數(shù)的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.12、C【解析】

因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點睛】本題考查了數(shù)陣問題,考查了學生邏輯推理,數(shù)學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對首位數(shù)的奇偶進行分類討論,利用分步乘法計數(shù)原理和分類加法計數(shù)原理可得出結果.【詳解】①若首位為奇數(shù),則第一、三、五個數(shù)位上的數(shù)都是奇數(shù),其余三個數(shù)位上的數(shù)為偶數(shù),此時,符號條件的位自然數(shù)個數(shù)為個;②若首位數(shù)為偶數(shù),則首位數(shù)不能為,可排在第三或第五個數(shù)位上,第二、四、六個數(shù)位上的數(shù)為奇數(shù),此時,符合條件的位自然數(shù)個數(shù)為個.綜上所述,符合條件的位自然數(shù)個數(shù)為個.故答案為:.【點睛】本題考查數(shù)的排列問題,要注意首位數(shù)字的分類討論,考查分步乘法計數(shù)和分類加法計數(shù)原理的應用,考查計算能力,屬于中等題.14、10【解析】

畫出可行域,根據(jù)目標函數(shù)截距可求.【詳解】解:作出可行域如下:由得,平移直線,當經(jīng)過點時,截距最小,最大解得的最大值為10故答案為:10【點睛】考查可行域的畫法及目標函數(shù)最大值的求法,基礎題.15、【解析】

根據(jù)已知條件計算出,結合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計算能力,屬于中等題.16、【解析】

求函數(shù),研究函數(shù)的單調(diào)性和極值,作出函數(shù)的圖象,設,若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,利用一元二次函數(shù)根的分布進行求解即可.【詳解】當時,,由得:,解得,由得:,解得,即當時,函數(shù)取得極大值,同時也是最大值,(e),當,,當,,作出函數(shù)的圖象如圖,設,由圖象知,當或,方程有一個根,當或時,方程有2個根,當時,方程有3個根,則,等價為,當時,,若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,則,即(1)解得:,故答案為:【點睛】本題主要考查函數(shù)與方程的應用,利用換元法進行轉(zhuǎn)化一元二次函數(shù)根的分布以及.求的導數(shù),研究函數(shù)的的單調(diào)性和極值是解決本題的關鍵,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1):,直線:;(2).【解析】

(1)由消參法把參數(shù)方程化為普通方程,再由公式進行直角坐標方程與極坐標方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標方程,求出極徑,把比值化為的三角函數(shù),從而可得最大值、【詳解】(1)消去參數(shù)可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標方程是;由,化為直角坐標方程為.(2)設,則,,,當時,取得最大值為.【點睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,掌握公式可輕松自如進行極坐標方程與直角坐標方程的互化.18、(1);(2)【解析】

(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結合,設,在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為,所以,即,即,所以.(2)∵,.所以,從而.所以,.不妨設,O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結合的方法,屬于中檔題.19、(1);(2)【解析】分析:(1)將代入函數(shù)解析式,求得,利用零點分段將解析式化為,然后利用分段函數(shù),分情況討論求得不等式的解集為;(2)根據(jù)題中所給的,其中一個絕對值符號可以去掉,不等式可以化為時,分情況討論即可求得結果.詳解:(1)當時,,即故不等式的解集為.(2)當時成立等價于當時成立.若,則當時;若,的解集為,所以,故.綜上,的取值范圍為.點睛:該題考查的是有關絕對值不等式的解法,以及含參的絕對值的式子在某個區(qū)間上恒成立求參數(shù)的取值范圍的問題,在解題的過程中,需要會用零點分段法將其化為分段函數(shù),從而將不等式轉(zhuǎn)化為多個不等式組來解決,關于第二問求參數(shù)的取值范圍時,可以應用題中所給的自變量的范圍,去掉一個絕對值符號,之后進行分類討論,求得結果.20、(1),();(2).【解析】

(1)根據(jù)是等差數(shù)列,,、、成等比數(shù)列,列兩個方程即可求出,從而求得,代入化簡即可求得;(2)化簡后求和為裂項相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當時,.②當時,.【點睛】此題等差數(shù)列的通項公式的求解,裂項相消求和等知識點,考查了化歸和轉(zhuǎn)化思想,屬于一般性題目.21、(1)(2)證明見解析【解析】

(1)據(jù)題意可得在區(qū)間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論