![新高考數(shù)學(xué)二輪復(fù)習(xí)講練思想02 運(yùn)用數(shù)形結(jié)合的思想方法解題(4大題型)(練習(xí))(解析版)_第1頁](http://file4.renrendoc.com/view14/M06/11/29/wKhkGWdbiZ2AMdlKAAFbWzPLpKQ627.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)講練思想02 運(yùn)用數(shù)形結(jié)合的思想方法解題(4大題型)(練習(xí))(解析版)_第2頁](http://file4.renrendoc.com/view14/M06/11/29/wKhkGWdbiZ2AMdlKAAFbWzPLpKQ6272.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)講練思想02 運(yùn)用數(shù)形結(jié)合的思想方法解題(4大題型)(練習(xí))(解析版)_第3頁](http://file4.renrendoc.com/view14/M06/11/29/wKhkGWdbiZ2AMdlKAAFbWzPLpKQ6273.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)講練思想02 運(yùn)用數(shù)形結(jié)合的思想方法解題(4大題型)(練習(xí))(解析版)_第4頁](http://file4.renrendoc.com/view14/M06/11/29/wKhkGWdbiZ2AMdlKAAFbWzPLpKQ6274.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)講練思想02 運(yùn)用數(shù)形結(jié)合的思想方法解題(4大題型)(練習(xí))(解析版)_第5頁](http://file4.renrendoc.com/view14/M06/11/29/wKhkGWdbiZ2AMdlKAAFbWzPLpKQ6275.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
思想02運(yùn)用數(shù)形結(jié)合的思想方法解題目錄01研究函數(shù)的零點(diǎn)、方程的根、圖象的交點(diǎn) 102解不等式、求參數(shù)范圍、最值問題 603解決以幾何圖形為背景的代數(shù)問題 904解決數(shù)學(xué)文化、情境問題 1301研究函數(shù)的零點(diǎn)、方程的根、圖象的交點(diǎn)1.(2024·云南·高三校聯(lián)考階段練習(xí))關(guān)于函數(shù)SKIPIF1<0,則下列說法正確的是(
)A.函數(shù)在SKIPIF1<0上單調(diào)遞減B.當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上恒成立C.當(dāng)SKIPIF1<0或SKIPIF1<0時,函數(shù)SKIPIF1<0有2個零點(diǎn)D.當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0有3個零點(diǎn),記為SKIPIF1<0,則SKIPIF1<0【答案】D【解析】對于A,因為函數(shù)SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0;當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0;此時函數(shù)SKIPIF1<0單調(diào)遞減,作出函數(shù)SKIPIF1<0的大致圖象如圖,故A錯;對于B,由A選項可知,易知SKIPIF1<0,又易知SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞減,SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,若SKIPIF1<0,SKIPIF1<0不一定成立,例如當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0,SKIPIF1<0不一定成立,故B錯;對于C,方程SKIPIF1<0的根即為SKIPIF1<0與函數(shù)SKIPIF1<0的交點(diǎn)橫坐標(biāo),由A可知,函數(shù)SKIPIF1<0在SKIPIF1<0時取得極大值1,在SKIPIF1<0時取得極小值SKIPIF1<0;作出函數(shù)SKIPIF1<0的圖象如圖,當(dāng)SKIPIF1<0或SKIPIF1<0時,函數(shù)SKIPIF1<0有1個零點(diǎn),故C錯;對于D,函數(shù)SKIPIF1<0有3個零點(diǎn),則可得SKIPIF1<0,且SKIPIF1<0;記SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,于是SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故選:D.2.(2024·四川南充·統(tǒng)考一模)已知函數(shù)SKIPIF1<0(SKIPIF1<0)有兩個不同的零點(diǎn)SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),下列關(guān)于SKIPIF1<0,SKIPIF1<0的說法正確的有(
)個①SKIPIF1<0
②SKIPIF1<0
③SKIPIF1<0
④SKIPIF1<0A.1 B.2 C.3 D.4【答案】D【解析】由函數(shù)SKIPIF1<0有兩個不同零點(diǎn)SKIPIF1<0,轉(zhuǎn)化為SKIPIF1<0有兩個交點(diǎn)SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,而SKIPIF1<0,可得SKIPIF1<0圖象如圖所示故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,對于①,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故①正確;對于②,由①可知SKIPIF1<0,故SKIPIF1<0,因此SKIPIF1<0,故②正確;對于③,因為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,構(gòu)造SKIPIF1<0,顯然SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,故③正確;對于④,由①可知,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0,故④正確.故選:D3.(2024·內(nèi)蒙古錫林郭勒盟·高三統(tǒng)考期末)若過點(diǎn)SKIPIF1<0可以作三條直線與曲線SKIPIF1<0相切,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0,得SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,SKIPIF1<0,過切點(diǎn)的切線方程為SKIPIF1<0,代入點(diǎn)SKIPIF1<0坐標(biāo)化簡為SKIPIF1<0,即這個方程有三個不等式實根,令SKIPIF1<0,求導(dǎo)得到SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,或SKIPIF1<0,故函數(shù)SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,故得SKIPIF1<0,結(jié)合SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0,故選:D.4.(2024·廣東深圳·高三深圳外國語學(xué)校校聯(lián)考期末)已知函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0的方程SKIPIF1<0有且僅有4個不同的實數(shù)根,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,SKIPIF1<0.畫出函數(shù)SKIPIF1<0的圖象,如下圖所示,可得函數(shù)最小值為SKIPIF1<0有四個不同的實數(shù)根,數(shù)形結(jié)合可知SKIPIF1<0的取值范圍是SKIPIF1<0,故選:A.02解不等式、求參數(shù)范圍、最值問題5.(2024·四川內(nèi)江·統(tǒng)考三模)若關(guān)于x的不等式SKIPIF1<0有且只有一個整數(shù)解,則正實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】原不等式可化簡為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,易知函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,作出SKIPIF1<0的圖象如下圖所示,而函數(shù)SKIPIF1<0恒過點(diǎn)SKIPIF1<0,要使關(guān)于SKIPIF1<0的不等式SKIPIF1<0有且只有一個整數(shù)解,則函數(shù)SKIPIF1<0的圖象應(yīng)介于直線SKIPIF1<0與直線SKIPIF1<0之間(可以為直線SKIPIF1<0),又SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:A.6.(2024·陜西漢中·高二統(tǒng)考期末)若函數(shù)SKIPIF1<0(m為實數(shù))有極大值,則SKIPIF1<0的范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題意知SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,無極值點(diǎn);當(dāng)SKIPIF1<0時,根據(jù)SKIPIF1<0與SKIPIF1<0的圖象,設(shè)兩個函數(shù)在第一象限的交點(diǎn)的橫坐標(biāo)為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,故當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0有一個極大值點(diǎn).故選:D7.(2024·山西臨汾·高三統(tǒng)考階段練習(xí))已知三次函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若方程SKIPIF1<0有四個實數(shù)根,則實數(shù)a的范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】令SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,算出SKIPIF1<0的極值,又方程SKIPIF1<0有四個實數(shù)根可轉(zhuǎn)化為方程SKIPIF1<0,或方程SKIPIF1<0共有四個實數(shù)根,結(jié)合函數(shù)圖象列出SKIPIF1<0滿足的條件即可.SKIPIF1<0,SKIPIF1<0由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0的極大值為SKIPIF1<0,SKIPIF1<0的極小值為SKIPIF1<0;又SKIPIF1<0有四個實數(shù)根,故方程SKIPIF1<0,或方程SKIPIF1<0共有四個實數(shù)根,SKIPIF1<0SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,解得:SKIPIF1<0.故選:A03解決以幾何圖形為背景的代數(shù)問題8.(2024·云南曲靖·高三校聯(lián)考階段練習(xí))已知曲線C:SKIPIF1<0.①曲線C的圖像一定經(jīng)過第三象限;②若SKIPIF1<0為曲線C上一點(diǎn),則SKIPIF1<0;③存在SKIPIF1<0,SKIPIF1<0與曲線C有四個交點(diǎn);④直線SKIPIF1<0與曲線C無公共點(diǎn)當(dāng)且僅當(dāng)SKIPIF1<0.其中所有正確結(jié)論的序號是.【答案】①②【解析】當(dāng)SKIPIF1<0時,曲線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,曲線SKIPIF1<0是雙曲線的一部分;當(dāng)SKIPIF1<0時,曲線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,曲線SKIPIF1<0是橢圓的一部分;當(dāng)SKIPIF1<0時,曲線SKIPIF1<0的方程為SKIPIF1<0,曲線SKIPIF1<0不存在;當(dāng)SKIPIF1<0時,曲線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,曲線SKIPIF1<0是雙曲線的一部分,其中雙曲線SKIPIF1<0和SKIPIF1<0有一條共同的漸近線SKIPIF1<0,綜上可得,畫出曲線SKIPIF1<0的圖象,如圖所示,由圖象可知,曲線SKIPIF1<0的圖象經(jīng)過第三象限,所以①正確;由圖象知,曲線SKIPIF1<0的圖象上的點(diǎn)都在直線SKIPIF1<0的下方,所以當(dāng)SKIPIF1<0在曲線SKIPIF1<0上時,有SKIPIF1<0,所以②正確;直線SKIPIF1<0時表示與SKIPIF1<0平行或重合的直線,由曲線SKIPIF1<0的圖象知,直線SKIPIF1<0與曲線SKIPIF1<0不可能有四個交點(diǎn),所以③錯誤;設(shè)直線SKIPIF1<0與橢圓SKIPIF1<0相切,聯(lián)立方程組SKIPIF1<0整理得SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,結(jié)合曲線SKIPIF1<0的圖象,取SKIPIF1<0,即SKIPIF1<0與曲線SKIPIF1<0相切,所以直線SKIPIF1<0與曲線SKIPIF1<0無公共點(diǎn),結(jié)合曲線SKIPIF1<0的圖象,可知SKIPIF1<0或SKIPIF1<0,所以④不正確.故答案為:①②.9.(2024·江蘇鎮(zhèn)江·高三江蘇省鎮(zhèn)江第一中學(xué)??茧A段練習(xí))過雙曲線SKIPIF1<0的右支上一點(diǎn)SKIPIF1<0,分別向⊙SKIPIF1<0和⊙SKIPIF1<0作切線,切點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0的最小值為.
【答案】17【解析】由SKIPIF1<0,得SKIPIF1<0,所以雙曲線的焦點(diǎn)坐標(biāo)為SKIPIF1<0,由圓的方程知:圓SKIPIF1<0圓心的坐標(biāo)為SKIPIF1<0,半徑SKIPIF1<0,圓SKIPIF1<0圓心的坐標(biāo)為SKIPIF1<0,半徑SKIPIF1<0,SKIPIF1<0分別為兩圓切線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為雙曲線右支上的點(diǎn),且雙曲線焦點(diǎn)為SKIPIF1<0,又SKIPIF1<0(當(dāng)為雙曲線右頂點(diǎn)時取等號),SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0.故答案為:17.10.(2024·全國·高三專題練習(xí))如圖,在圓內(nèi)接四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0的值為.【答案】SKIPIF1<0【解析】由余弦定理知SKIPIF1<0,所以SKIPIF1<0,由正弦定理得SKIPIF1<0,所以SKIPIF1<0為圓的直徑,所以SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0為等邊三角形;以SKIPIF1<0為原點(diǎn),以SKIPIF1<0所在直線為SKIPIF1<0軸,SKIPIF1<0所在直線為SKIPIF1<0軸建立如下圖所示的平面直角坐標(biāo)系:則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.故答案為:SKIPIF1<0.11.(2024·貴州貴陽·高三貴陽一中??茧A段練習(xí))已知平面向量SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)向量SKIPIF1<0(SKIPIF1<0為實數(shù)),則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】如圖所示,以SKIPIF1<0為坐標(biāo)原點(diǎn),邊長為2的正方形SKIPIF1<0的SKIPIF1<0,SKIPIF1<0所在直線為SKIPIF1<0軸和SKIPIF1<0軸,建立坐標(biāo)系,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0上一點(diǎn),則SKIPIF1<0,因為SKIPIF1<0,所以以SKIPIF1<0為圓心,SKIPIF1<0為半徑畫圓,點(diǎn)SKIPIF1<0為圓上一點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0,,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,可得直線SKIPIF1<0表示斜率為SKIPIF1<0,縱截距為SKIPIF1<0的直線,當(dāng)圓心為點(diǎn)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0相切且點(diǎn)SKIPIF1<0在SKIPIF1<0軸的下方時,可得圓SKIPIF1<0的方程為SKIPIF1<0,可得切線坐標(biāo)為SKIPIF1<0,此時SKIPIF1<0,取得最小值;當(dāng)圓心為點(diǎn)SKIPIF1<0時,SKIPIF1<0經(jīng)過圓心時,圓SKIPIF1<0的方程為SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0時,此時SKIPIF1<0,取得最大值,所以SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.04解決數(shù)學(xué)文化、情境問題12.(2024·福建漳州·統(tǒng)考模擬預(yù)測)公元SKIPIF1<0年,唐代李淳風(fēng)注《九章》時提到祖暅的“開立圓術(shù)”.祖暅在求球的體積時,使用一個原理:“冪勢既同,則積不容異”.“冪”是截面積,“勢”是立體的高,意思是兩個同高的立體,如在等高處的截面積相等,則體積相等.更詳細(xì)點(diǎn)說就是,介于兩個平行平面之間的兩個立體,被任一平行于這兩個平面的平面所截,如果兩個截面的面積相等,則這兩個立體的體積相等.上述原理在中國被稱為“祖暅原理”.SKIPIF1<0打印技術(shù)發(fā)展至今,已經(jīng)能夠滿足少量個性化的打印需求,現(xiàn)在用SKIPIF1<0打印技術(shù)打印了一個“睡美人城堡”.如圖,其在高度為SKIPIF1<0的水平截面的面積SKIPIF1<0可以近似用函數(shù)SKIPIF1<0,SKIPIF1<0擬合,則該“睡美人城堡”的體積約為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】如下圖所示:圓錐SKIPIF1<0的高和底面半徑為SKIPIF1<0,平行于圓錐SKIPIF1<0底面的截面角圓錐SKIPIF1<0的母線SKIPIF1<0于點(diǎn)SKIPIF1<0,設(shè)截面圓圓心為點(diǎn)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,易知SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,所以,截面圓圓SKIPIF1<0的半徑為SKIPIF1<0,圓SKIPIF1<0的面積為SKIPIF1<0,又因為SKIPIF1<0,根據(jù)祖暅原理知,該“睡美人城堡”的體積與一個底面圓半徑為SKIPIF1<0,高為SKIPIF1<0的圓錐的體積近似相等,所以該“睡美人城堡”的體積約為SKIPIF1<0,故選:D.13.(2024·北京順義·高三統(tǒng)考期末)《九章算術(shù)》中將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為“陽馬”.現(xiàn)有一“陽馬”SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為底面SKIPIF1<0及其內(nèi)部的一個動點(diǎn)且滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,四邊形SKIPIF1<0為矩形,以SKIPIF1<0為SKIPIF1<0軸建立如圖所示坐標(biāo)系,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0因為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:D14.(2024·山東濟(jì)寧·高三統(tǒng)考期末)九連環(huán)是我國古代至今廣為流傳的一種益智游戲,它由九個鐵絲圓環(huán)相連成串按一定移動圓環(huán)的次數(shù)決定解開圓環(huán)的個數(shù).在某種玩法中,用SKIPIF1<0表示解下SKIPIF1<0個圓環(huán)所需要少移動的次數(shù),數(shù)列SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0則解下5個環(huán)所需要最少移動的次數(shù)為(
)A.7 B.10 C.16 D.31【答案】C【解析】SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- LY/T 3419-2024自然教育評估規(guī)范
- LY/T 3414-2024綠色工廠評價要求人造板及其制品
- 2025年造紙完成工段智能裝備合作協(xié)議書
- 浙教版數(shù)學(xué)七年級下冊《1.2 同位角、內(nèi)錯角、同旁內(nèi)角》聽評課記錄3
- 粵教版道德與法治八年級下冊5.3《憲法保障公民權(quán)利》聽課評課記錄
- 環(huán)境評估公司合并合同(2篇)
- 一年級蘇教版數(shù)學(xué)下冊《認(rèn)識圖形(二)》聽評課記錄
- 統(tǒng)編版八年級下冊道德與法治第三課 公民權(quán)利2課時 聽課評課記錄
- 部審人教版九年級數(shù)學(xué)下冊聽評課記錄27.2.1 第4課時《兩角分別相等的兩個三角形相似》
- 人教版數(shù)學(xué)七年級下冊聽評課記錄7.1.1《 有序數(shù)對》
- 《金屬加工的基礎(chǔ)》課件
- 運(yùn)輸行業(yè)春節(jié)安全生產(chǎn)培訓(xùn) 文明駕駛保平安
- 體驗式沙盤-收獲季節(jié)
- 老年護(hù)理陪護(hù)培訓(xùn)課件
- 2019年420聯(lián)考《申論》真題(山西卷)試卷(鄉(xiāng)鎮(zhèn)卷)及答案
- 醫(yī)院投訴糾紛及處理記錄表
- YY/T 0698.5-2023最終滅菌醫(yī)療器械包裝材料第5部分:透氣材料與塑料膜組成的可密封組合袋和卷材要求和試驗方法
- 醬香型白酒工廠設(shè)計
- 【深度教學(xué)研究國內(nèi)外文獻(xiàn)綜述2100字】
- 牽引管道孔壁與管道外壁之間注漿技術(shù)方案
- 新人教版四年級下冊數(shù)學(xué)教材解讀課件
評論
0/150
提交評論