版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Lesson22Moore’slaw:theFutureofSimicroelectronics
(第二十二課摩爾定律:硅微電子學的未來)
Vocabulary(詞匯)ImportantSentences(重點句)QuestionsandAnswers(問答)Problems(問題)
SoonafterBardeen,Brattain,andShockleyinventedasolid-statedevicein1947toreplaceelectronvacuumtubes,themicroelectronicsindustryandarevolutionstarted.Sinceitsbirth,theindustryhasexperiencedfourdecadesofunprecedentedexplosivegrowthdrivenbytwofactors:NoyceandKilbyinventingtheplanarintegratedcircuitandtheadvantageouscharacteristicsthatresultfromscaling(shrinking)solid-statedevices.Scalingsolid-statedeviceshasthepeculiarpropertyofimprovingcost,performance,andpower,whichhashistoricallygivenanycompanywiththelatesttechnologyalargecompetitiveadvantageinthemarket.Asaresult,themicroelectronicsindustryhasdriventransistorfeaturesizescalingfrom10μmto30nmduringthepast40years.Duringmostofthistime,scalingsimplyconsistedofreducingthefeaturesize.However,duringcertainperiods,thereweremajorchangesaswiththeindustrymovefromSibipolartop-channelMetal-OxideSemiconductor(MOS),thenton-channelMOS,andfinallytoComplementaryMOS(CMOS)planartransistorsinthe1980s,whichhasremainedthedominatetechnologyforthepasttwodecades.ThebigchallengegoingforwardisthattheendofplanarCMOStransistorscalingisnearasthetransistorsizeapproachestensofnanometers.Howtheindustryevolvesafterthislimitisreachedisunclear.
Toaddressthesechallenges,presentdayresearchisfocusedonidentifyingnewmaterialsanddevicesthatcanaugmentand/orpotentiallyreplacetheaging50-year-oldSitransistor.Twoapproachesunderinvestigationare:(1)nonclassicalCMOS,whichconsistsofnewchannelmaterialsand/ormultigatefullydepleteddevicestructures;and(2)alternativestoCMOS,suchasspintronics,singleelectrondevices,andmolecularcomputingWhilesomeofthesenon-Siresearchareasareimportantandwillbesuccessfulinnewapplicationsandmarkets,itseemsunlikelyanyofthenon-SioptionscanreplacetheSitransistorforthe$300billionmicroelectronicsindustryintheforeseeablefuture(perhapsaslongas30years).
ThisreviewaimstoexplainthefutureofSimicroelectronics,keyissuesattheendoftheSiroadmap,andthetimeframeforpossiblenon-Sitechnologyreplacements.WefirstdiscussthestateofMoore’slawandconventionalplanarSitransistorscalinglimits.Next,wecovertheissuesattheendoftheSiroadmapbasedoncurrenttechnologytrends.Weend,perhapsfoolhardily,withanassessmentofnonclassicalCMOSandalternativestoCMOS.Thekeytakeawaymessagesarethatsimplescalinghasended,thereisenormouslifeleftinplanarSiCMOStechnology,andnothingisonthehorizontoreplaceitformainstreamlogicapplications.[1]
1StatusofMoore’slaw
Moore’slawistheempiricalobservationthatcomponentdensityandperformanceofintegratedcircuitsdoubleseveryyear,whichwasthenrevisedtodoublingeverytwoyears.GuidedbythescalingrulessetbyDennardin1974,smartoptimization,timelyintroductionofnewprocessingtechniques,devicestructures,andmaterials(inmanyareasofthedeviceexceptthechannel),Moore’slawhascontinuedunabatedfor40years.Drivenbytremendousadvancesinlithography,the65nmlogictechnologynodefeaturing30nmtransistorsiscurrentlyinhighvolumeproduction.Furthermore,45nmand32nmtechnologieswithprocesstargetsdefinedtomaintainMoore’slawarecurrentlyunderdevelopmentatseveralcompanies.Withsuchsmallfeaturesizesinhighvolumeproductionandunderdevelopment,SiCMOStechnologiesarenowleadingthefieldofnanotechnologyandwillcontinuetodoso.Nanotechnologyisdefined,accordingtotheNationalScienceandEngineeringTechnologyCouncil(NSET),as:
Researchandtechnologydevelopmentattheatomic,molecular,ormacromolecularlevels,inthelengthscaleofapproximately1-100nmrange,toprovideafundamentalunderstandingofphenomenaandmaterialsatthenanoscaleandtocreateandusestructures,devices,andsystemsthathavenovelpropertiesandfunctionsbecauseoftheirsmalland/orintermediatesize.Thenovelanddifferentiatingpropertiesandfunctionsaredevelopedatacriticallengthscaleofmattertypicallyunder100nm.
SiMOSFETsenteredthenanometereraaround2000,asseeninFig.1,thatshowstechnologynodeandtransistorfeaturesizeversusyearforthesemiconductorindustry.Forthe0.13μmtechnologynode,theindustryincorporated70nmgatelengthtransistorsonaverage.Whatisinterestingtonoteisthattraditionaltop-downmicroelectronicshavenotonlybecomenanoelectronicsbutthedevicedimensionsarenowcomparabletothosebeingexploredinthenewfieldofbottom-upnanotechnologyandmolecularelectronics!Fig.1Logictechnologynodeandtransistorgatelengthversuscalendar
year.NotemainstreamSitechnologyisnanotechnology
Thekeydriverbehindthesetrendsiseconomics,aspointedoutbyMoorein1965.AccordingtoMoore,integratedcircuitsandscalingare“thecheapwaytodoelectronics”.EvenwithlargeincreasesinlithographytoolcosttofabricatenanoscaleCMOStransistors(forexample,thecostoflithographysteppersincreasedfrom$10000to$35million,asshowninFig.2),whichhasleadtomodernfactoriescosting$2-3billion,thecostpertransistorhasdecreasedbysevenordersofmagnitudeduringthelast40years(Fig.2)andislikelytocontinuetodecreaseforanotherdecade.However,CMOStransistorscalingmustinevitablyslowdownandfinallyhalt,atleastinthetraditionalsense,asthelithographyscaleapproachesatomicdimensions.Fig.2Transistorcostandlithographictoolcostversusyears.
Notetransistorcosthasdecreasedsevenordersofmagnitudeevenwhiletoolcosthasincreased.2CMOSLimits
WhenstartingadiscussionofCMOSlimits,itisfirstimportanttopointoutthatwhenthelimitsarehit,thiswillnotbetheendofintegratedcircuitsorMoore’slaw.Allitmeansisthattherateofimprovementwillchangeonceagain(ashappenedin1975).ImprovementswillinsteadcomefromareasotherthanscalingandSiCMOStechnologywillcontinueformanydecadesbeforeacrediblealternativearises.Forexample,evenifdevicedensityslows,costpertransistorwillcontinuetobereducedthroughimprovedtoolproductivity,cycletimereduction,defectelimination,andpossibly,thoughunlikely,anotherwafersizeconversionbytheindustry,thusfurtherextendingMoore’slaw.Nextitisimportanttoclassifythelimitsaspracticalortheoreticalandintothecategoriesoflithography,transistor,andwiring.Inthiswork,wewillfocusontransistorlimitssincethisappearstobethemostseriousissue.Atpresent,lithographywillnotbethelimiter.Asatestamentastohowfarengineerscanpushmainstreamtechnology,conventionalopticallithographyenhancedwithhighnumericalaperture,reticalenhancementtechniques,anddoubleexposurecanpatternthe22nmnode,puttingintoquestiontheroleofnonopticallithographytechniquessuchasExtremeUltraViolet(EUV)lithographyWiringlimits,thoughserious,canbeaddressedbyarchitectureandaddingmoremetallayers.3PlanarCMOSTransistorLimits
Transistorscalinglimitsarisefrompracticallimitsrelatedtoleakagecurrentatsmallgatelengths.Theproblematsmallgatelengthsisthatthedrainvoltagereducesthebarrierheightatthesource,therebycausingalowsource-to-channelbarrierheightevenwiththegatevoltageoff,whichleadstoundesirable,largeoff-stateleakage.Thisphenomenonisreferredtoasdrain-inducedbarrierloweringand/ordegradedShortChannelEffect(SCE).ForevidencethatCMOSplanartransistorsareapproachingtheirminimumpracticalsize,oneonlyneedlookattheoff-stateleakagetrendsfortheindustry.CMOSwasinitiallypromisedasatechnologythatdissipatednegligiblepowerinthestandbystate.Inpresentdayhigh-performancelogictechnologiesdesignedformicroprocessors,theleakagepowerofCMOStransistorsisapproximately20-30W(outofatotalpowerbudgetof100W).Thismagnitudeofleakageisalreadyatthepracticallimitsinceitincreasespackagingcost(becauseofcooling)and,evenmoreimportantly,energycost(bothintermsofutilitybillsandtheinfrastructuretogetenergyintocorporateservercomputerrooms).Topreventfurtherincreasesinleakage,therateofgatelengthscalinghasalreadyslowedintherecent90nmand65nmtechnologynodes.ThereisnohardlimitontheminimumsizeofaplanarCMOSdevice,butpracticalconsiderationsonleakagelimitthephysicalgatelengthto20nm.
Withtheindustryalreadyclosetothelimitsofplanartransistors,progresscanstillbeachievedusingmethodsotherthanscaling.OnepossibleoptionisyetagaintomovetoalternatedevicestructureswhilestillusingaSichannelsuchasmultigatefullydepleteddevices(sometimescallednonclassicalCMOS).Withoutquestion,thesenonclassicaldevicesimproveSCE(reduceleakage)becauseofimprovedelectrostaticsfromthemultigatesandultrathinbodies.Fig.3showsasummaryoffullydepleteddevicesinvestigatedbytheindustryduringthepasttwodecades.AllofthesedevicesarebasedonathinlayerofSi-On-Insulator(SOI).However,thispathhasnotbeenchosenbytheindustryatpresentandkeepsgettingpushedouttofuturetechnologynodesbecauseofthreedifficultandunsolvedissues:(1)athinbodyleadstohigherexternalresistance,whichwillbeshowntobeasignificantissueinstate-of-the-artnanoscaleMOSFETSwheretheexternalresistanceisbecomingcomparableinmagnitudetothechannelresistance;(2)significantuniformity,processcomplexity,andcostissuesassociatedwithfabricatingmultigatedevices;and(3)difficultyinengineeringthebandstructureinfullydepleteddevicesusingstrain(tocreatealowconductivitymass),whichhasalreadybecomemainstreaminplanarCMOStoincreasecarriermobility(transistorspeed).
Insteadofmovingtoanewdevicestructure,thepathchosenbytheindustryistoimprovetransistorperformancewithoutanyfurthershrinkingofthetransistorgatelengthbyintroducinglatticestrainintotheSichannel.ThisapproachsignificantlyaltersthebandstructureandaddressesSitransportdeficienciescomparedwithotherhigh-mobility,III-Vsemiconductors.
Forexample,byalteringthepositionofSiatomsintheface-centeredcubicunitcell,theholeconductivityeffectivemasscanbereducedbyafactorof1/4,whichimprovesmobilityandresultsina100-200%increaseintransistorcurrentanddramaticperformancegains.Asaresult,strainedSiisbeingimplementedinnearlyall90nm,65nm,and45nmtechnologynodes.Theresultshavebeensosuccessfulthatitwillbedifficultforalternativehigh-mobilitychanneltechnologiestocompetewithstrainedSi.TheadoptionofstrainedSiwhilekeepingthegatelengthconstantstillsupportsthehistoricaltransistordensityincreaseandcostreduction(atleastinitially)sincethegatedimensionisonlyafractionofthetransistorpitch(i.e.transistordensityisincreasedbyreducingthespacebetweentransistorsandnotthegatelength).Maintainingaconstantgatelength(whilescalingthespaceandpitch)isviableforafewtechnologynodes,butwilleventuallyleadtoscalingbeinglimitedbyparasiticresistanceandcapacitancebecauseofthespacebetweentransistorsbecomingtoosmall.Fig.3EmergingalternativefullydepletedCMOSstructuresforcontinuescaling;(a)one-;(b,c)two-,and(d)three-gatefutlydepleteddevices.(Part(d)courtesyofR.Chau.intel.)4RealLimiterstoScaling:ParasiticResistanceandCapacitance
WiththeendofplanarSitransistorscalinginsight,itisnowpossibletogiveaninsightintothereallimitsontheSiroadmap,whicharetheparasiticresistanceandcapacitancegenerallyassumednegligiblebyscalingtheories.Thiswasagoodassumptionforthepast40yearsbutwillnolongerbethecaseduringthenextdecade.Fig.4showsthevariousparasiticresistancesandcapacitancespresentinaplanarMOSFET.Thesuddenriseinparasiticsattheendoftheroadmapcanbequalitativelyunderstoodasresultingfromthespacebetweenneighboringdevicesdecreasingtotensofnanometerssincethesource/drainandcontactsizeneedtobeaggressivelyscaledtosupporttheincreaseddensityintheabsenceofgatelengthscaling.Fig.4depictsthetypicaldesignrulesofplanarSitransistorsforthe32nmtechnologynode.Itcanbeseenthatthesource/draincontactandthegateareonlytensofnanometersapart,whichisundesirableintermsofparasiticresistance.Suchsmallcontactsizeleadstohighercontactresistanceandcontact-to-gatecapacitance.Fig.4PlanarCMOSschematicshowingthevariousparasiticresistancesandcapacltances(drawntoscaleforthe32nmprocesstechnologynode,,transistorpitch=100nm)
Historically,theparasiticsdidnotmattersincetheyweremuchsmallerthanthechannelresistanceandcapacitance.However,theintrinsicchannelcapacitanceandresistancehasdecreaseddramaticallyduringthepastfourdecades.Tothefirstorder,channelresistanceandcapacitancearebothproportionaltothegatedimension,whichhasdecreased1000timessincethestartofMoore’slaw.Becauseofsuchdramaticreductionsinchannelresistance,theparasiticresistanceandcapacitancearenowbecomingcomparableandareoncoursetobecomingevenlargerthantheintrinsicdeviceresistanceandcapacitance(Figs.5and6).Figs.5and6wereobtainedusingindustrydesignrulesforthe90nmand65nmtechnologynodes,0.7timesscalingforfuturenodes,andequationsfoundin
references.Slotortrenchcontactsareassumedforthe45nmtechnologynodeandbeyondtohelpminimizecontactresistance.
Theparasiticscalingtrendshighlightaninterestingareawherefuturetransistorresearchneedstobefocusedandimportantmetricsforfuturedevices.Muchofpresentdaytransistorresearchisfocusedonnewchannelmaterialsanddevicesforveryhighmobility.Thescalingtrendssuggestthereallimiterisparasiticsandthatthisiswherethefocusneedstobe.Oncethechannelresistancebecomessmallerthantheexternalresistance,reducingthechannelresistancefurther,eventozero,haslittleperformancebenefit(thesameistrueforcapacitance).Furthermore,andperhapsmoreimportantly,ithighlightsthatnewdevicestructuresneedtobejudgedonparasiticresistanceandcapacitancemorethanonchanneltransportproperties.Todate,parasiticsaremuchworseformostnewdeviceoptionsandrarelyisthistakenintoaccount.Take,forexample,therecentlogiccircuitsdemonstratedincarbonnanotubetransistors.AlthoughthechannelmobilityisseveralordersofmagnitudehigherthanSi,thefabricatedinverters33-35are106-1010timesslowerthanstate-ofthe-artCMOSbecauseofparasitics!Also,infullydepletedmultigatedevicesfabricatedonSifins,theparasiticresistanceisworsethanintheplanarCMOStransistor23,24.Forbothfullydepletedandcarbonnanotubetransistors,thehighparasiticresistanceislikelytobeafundamentalproblembecauseofthesmallsource/drainvolume(thesource/draincontactsconnecttoaSibulk‘box’thatisjust5-10nmthickinthecaseoffullydepleteddevices;incarbonnanotubedevicesthisisevenless,withthethicknessontheorderofoneatomiclayer).Fig.5EstimatedtotalplanarCMOSparasiticandchannelresistanceversustechnologynode.Noteparesiticresistenceisoncoursetobecomelangerthantheintrinsicchannelresistance.Fig.6TotalplanarCMOSparasiticandintrinsicchannelcapacitanceversustechnologynode.Noteparasiticcapacitanceisoncoursetobecomelargerthanintrinsicchannelcapacitance.5ProspectstoReplaceSielectronics
WithSiCMOSscalinglimitsinsight,theobviousquestionsare“WhatnanotechnologyisonthehorizontoreplaceplanarSiCMOStransistorsandinwhattimeframecouldthishappen?”Thoughthesearedifficultandperhapsfoolhardyquestionstotryandanswer,itisimportanttoattempttodososincethisaffectsa$300billionworldwideindustryandthecareersofmostengineers.
Addressingthetimeframequestionfirst,howquicklytheindustrycanadoptaradicallydifferentdevicetypedependsonhowmanyresearchanddevelopmentlevelsitimpacts.Levelsaredefinedbydevelopmenteffortsandorganizationsthatarecurrentlypresentinthemicroelectronicsindustrysuchasmaterials,devicedesign,circuitdesign,computerarchitecture,andsoftware.Asaruleofthumb,pastchangesthataffectonelevelgenerallytakeapproximatelyfiveormoreyearswiththeexceptionofsoftware,whichtakesevenlonger.ExamplesofrecentchangesthatmostlyaffectedonelevelandtookfiveyearsormorearebipolartoplanarCMOStransistors,strainedSi,high-kgatedielectrics,low-kbackenddielectrics,andcomputerarchitecturechangessuchashyperthreadingandthemovefromsinglethreadperformancetodualcoremicroprocessors.Manyofthenon-Sidevicetypesaffectmultipleresearchanddevelopmentlevelswithmostradicalnewdevicesaffectingalllevels.Changesthataffectmultiplelevelscaneasilytakefiveyearsperlevelandareverydifficult.Forexample,anewdevicebasedonsingle-electrontransportorspintronicswilllikelyrequireanewproductarchitectureandsoftwaretotakeadvantageoftheiruniquedeviceattributes(highdensityandlowpower)andlimitations(smalltransistordrivecurrentandinabilitytodrivethesixtotenlayersofCuinterconnectsusedtowirethe100sofmillionstobillionoftransistorsinmodernchips).Thus,aradicallynewdevicetypecouldeasilytakeover15-20yearstocoordinatethechangesamongallthelevelsoncetheindustryhasdecidedtopursuethisapproach.Sincetheindustryisstillmorethanadecadeawayfrommakingadecisiononwhichnewdevicetypetopursue,itputsthetimeframeforaradicalnewnanotechnologydeviceformainstreamlogicapplicationsmorethan30yearsaway.Whentheindustrytalksaboutradicallynewdevicetypesthatwill“revolutionizecomputing”,thistypeoftimeperspectiveisoftenmissed.Fig.7attemptstoputinperspectivethetimeframerequiredtoimplementsomeofthenewradicaldevicetypesintoproduction.
Thesecondpartofthequestioniswhatnon-SitechnologycanpotentiallyreplacetheSiplanardevice.Thisisperhapsanevenmoredifficultquestiontoanswerbutequallyimportantsinceresourcesforasociety(bothpeopleandcapital)needtobefocusedonthebestareasforreturn.Evenwiththesecaveats,someconclusionscanbedrawn.
First,iftheindustryisgoingtospendseveraldecadesatadevelopmentcostlikelytobegreaterthan$100billiontogetatechnologytoalevelcompetitivewiththealready>$1trillioninvestedinSitechnologyduringthepast40years,thenewtechnologyisgoingtohavetoofferatleastanorderofmagnitudeimprovementovertheplanarSiCMOStransistors.Fornoncharge-baseddevicesrelyingonradicallydifferentcomputingmodels,atthistimeitisdifficulttopredictthepotentialperformanceadvantages.However,fornon-Sicharge-baseddevices(Ge,III-V,orcarbonnanotubechannels),whichareviewedasthefirstpossiblereplacementstotheplanarSitransistor,itisnowbecomingpossibletoestimatethepotentialimprovementoverSi.Toassessthepotentialperformance,thefirstordermetricoftenusedisthemagnitudeofthechannelmobilityinthenewdevicetypescomparedwiththesurfacechannelSielectronandholemobility.Thoughcommonlyusedthisbenchmarkis,unfortunately,toosimplisticandinmanycasesleadstowrongconclusions.First,highmobilitycanresultfromeitherlowconductivitymassorscattering.Onlyreducedconductivitymass(asopposedtoreducedscattering)isimportantforballistic-limitedtransport,whichdominatesattheendoftheSiroadmap.Second,andequallyimportant,isthedensity-of-statesforholesandelectronsinthechannelmaterialsincethisaffectstheamountofinversionchargeandthedevicedrivecurrent(bothamountandvelocityofchargedeterminesthecurrent).Mostoftheveryhighmobilitymaterials(forexamplecarbonnanotubes)haveverylowdensity-of-states(severalordersofmagnitudelowerthanSi)makingitdifficulttoachievehighdrivecurrents.Infact,eveninthestrainedSitechnologycurrentlyinproduction,strainisusedtocreatebothalowconductivitymassinthechanneldirectionandahighdensity-of-statesbycreatingaverylargeconductivitymassintheplaneofthetransistorperpendiculartothechanneldirection.Includingtheseconsiderations,isnotclearifanyofthenewchannelmaterialsoffersignificantimprovementoverSi.Furthermore,basedonthepreviousdiscussionofparasiticresistance,fewnewchannelmaterialscancompetesinceagreatdealofdevelopmenthasgoneintoreducingexternalresistanceforSiCMOSdevicesbyusingmillisecondannealstocreateabovesolidsolubilitydopingandincorporatingnickelsilicide(NiSi)andSiGeinthesourceanddrain.6Conclusion
Basedoncurrenttechnologytrends,thescalinglimitstoplanarCMOSareclear.ThoughsimplescalingofplanarCMOShasended,thetechnologywillcontinueapproximatelyonMoore’shistoricalperformancetrendforanotherfewtechnologynodesmakingplanarCMOStheleaderincommercialnanotechnology.ThereallimitstoplanarSiCMOS(andmostnewdevicetypes)areparasiticresistanceandcapacitance.Thus,alternatedevicetypesshouldbebenchmarkedonparasiticsandnotjustchanneltransportproperties.Furthermore,radicallynewdevicetypeswillrequirechangesalongmanyresearchanddevelopmentlevelsfrommaterialstosoftware.Thetimeframetoimplementaradicallynewdeviceisestimatedtobe30years.ThusSiCMOSwillbethedominantformofnanotechnologyfortheforeseeablefuture.Finally,wemustrememberMoore’slawisnotaphysicallawbutalawabouteconomics.Consumerproductsandemergingmarketshavebecomethedominateendmarketsforsemiconductorsandwillcontinuetobesoforthenextdecade(versusthemilitaryinthe1960s-70s).Akeyattributeinthesemarketsisprice.Sitechnologyisoncourseinthenextdecadetoofferabilliontransistorchipsfor$1,whichwillbeaverydifficulttechnologytodisplace.[2]
1.?vacaumn.真空;〈口〉真空吸塵器;空間;空虛;空白vt.用真空吸塵器清掃(某物)。
2.?unprecedentedadj.前所未有的;空前的;沒有先例的。
3.?planaradj.平面的,平坦的。
4.?nanometern.納米。
5.?evolvevt.&vi.演變;進化vi.(動植物等)進化;進化形成。Vocabulary
6.?augmentedadj.增音的,擴張的。
7.?depletevt.使大大的減少;使空虛vi.耗盡;使枯竭。
8.?spintronicsn.自旋電子學。
9.?empiricallyadv.以經(jīng)驗為主地。
10.?reticlen.十字線,刻線。
11.?parasiticadj.寄生的,寄生蟲的;由寄生蟲引起的adv.寄生地;由寄生蟲引起地。
12.?ruleofthumb憑感覺的方法;單憑經(jīng)驗的方法。
13.?takeawayn.外賣餐館,外賣食品。
14.?caveatn.<律>中止訴訟程序的申請;警告,附加說明,告誡。
15.?ballisticadj.發(fā)射的,彈道(學)的,衡量沖擊強度的;大怒,暴跳如雷。
[1]Thekeytakeawaymessagesarethatsimplescalinghasended,thereisenormouslifeleftinplanarSiCMOStechnology,andnothingisonthehorizontoreplaceitformainstreamlogicapplications.
關鍵的信息是,簡單的比例縮放已經(jīng)結束了,但是平面硅CMOS工藝還有巨大的生命力。我們還不能肯定是否有能代替它作為主流邏輯應用的其他工藝。onthehorizon,在地平線上,幾乎肯定會很快發(fā)生的。ImportantSentences
[2]Consumerproductsandemergingmarketshavebecomethedominateforsemiconductorsandwillcontinuetobesoforthenextdecade(versusthemilitaryinthe1960s-70s).Akeyattributeinthesemarketsisprice.Sitechnologyisinthenextdecadetoofferabilliontransistorchipsfor$1,?whichwillbeaverydifficulttechnologytodisplace.
消費產(chǎn)品及其未來的市場已經(jīng)成為半導體的主要終端市
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 糧食浪費現(xiàn)象報告范文
- 上海思博職業(yè)技術學院《工程項目管理B》2023-2024學年第一學期期末試卷
- 上海視覺藝術學院《應用化學專業(yè)發(fā)展前沿》2023-2024學年第一學期期末試卷
- 游學報告范文
- 上海師范大學《材料力學(土木工程)》2023-2024學年第一學期期末試卷
- 2025公寓樓裝修合同
- 課題申報書:復雜適應系統(tǒng)視角下企業(yè)數(shù)字責任異化的形成、演化及治理研究
- 課題申報書:方言的視覺轉譯及活化傳承研究
- 課題申報書:多模態(tài)數(shù)據(jù)支持的同步課堂深度交互分析模型研究
- 課題申報書:多尺度復雜耦合視域下新質生產(chǎn)力與“雙碳”目標協(xié)同發(fā)展的機制、效應與政策研究
- 統(tǒng)編版2024-2025學年語文三年級上冊期末測試卷(含答案)
- 農(nóng)產(chǎn)品物流集散中心建設方案及發(fā)展思路
- 2024人教版英語七年級上冊期末全冊知識點復習
- 注冊會計師考試職業(yè)能力綜合測試科目(試卷一、試卷二)試題及解答參考(2024年)
- 行政案例分析-終結性考核-國開(SC)-參考資料
- 操作系統(tǒng)-001-國開機考復習資料
- 快樂讀書吧:中國民間故事(專項訓練)-2023-2024學年五年級語文上冊(統(tǒng)編版)
- 出車前的安全檢查
- 山東省煙臺市2023-2024學年高一上學期期末考試 化學 含解析
- 2024落實意識形態(tài)責任清單及風險點臺賬
- 2024年度護士長工作總結
評論
0/150
提交評論