湖南工商大學(xué)《深度學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)
湖南工商大學(xué)《深度學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)
湖南工商大學(xué)《深度學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)
湖南工商大學(xué)《深度學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁(yè)
湖南工商大學(xué)《深度學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線(xiàn)…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)湖南工商大學(xué)

《深度學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)正在開(kāi)發(fā)一個(gè)用于情感分析的深度學(xué)習(xí)模型,需要對(duì)模型進(jìn)行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機(jī)梯度下降(SGD)B.自適應(yīng)矩估計(jì)(Adam)C.牛頓法D.共軛梯度法2、假設(shè)正在開(kāi)發(fā)一個(gè)智能推薦系統(tǒng),用于向用戶(hù)推薦個(gè)性化的商品。系統(tǒng)需要根據(jù)用戶(hù)的歷史購(gòu)買(mǎi)記錄、瀏覽行為、搜索關(guān)鍵詞等信息來(lái)預(yù)測(cè)用戶(hù)的興趣和需求。在這個(gè)過(guò)程中,特征工程起到了關(guān)鍵作用。如果要將用戶(hù)的購(gòu)買(mǎi)記錄轉(zhuǎn)化為有效的特征,以下哪種方法不太合適?()A.統(tǒng)計(jì)用戶(hù)購(gòu)買(mǎi)每種商品的頻率B.對(duì)用戶(hù)購(gòu)買(mǎi)的商品進(jìn)行分類(lèi),并計(jì)算各類(lèi)別的比例C.直接將用戶(hù)購(gòu)買(mǎi)的商品名稱(chēng)作為特征輸入模型D.計(jì)算用戶(hù)購(gòu)買(mǎi)商品的時(shí)間間隔和購(gòu)買(mǎi)周期3、在一個(gè)情感分析任務(wù)中,需要同時(shí)考慮文本的語(yǔ)義和語(yǔ)法信息。以下哪種模型結(jié)構(gòu)可能是最有幫助的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠提取局部特征,但對(duì)序列信息處理較弱B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),擅長(zhǎng)處理序列數(shù)據(jù),但長(zhǎng)期依賴(lài)問(wèn)題較嚴(yán)重C.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),改進(jìn)了RNN的長(zhǎng)期記憶能力,但計(jì)算復(fù)雜度較高D.結(jié)合CNN和LSTM的混合模型,充分利用兩者的優(yōu)勢(shì)4、在自然語(yǔ)言處理任務(wù)中,如文本分類(lèi),詞向量表示是基礎(chǔ)。常見(jiàn)的詞向量模型有Word2Vec和GloVe等。假設(shè)我們有一個(gè)大量的文本數(shù)據(jù)集,想要得到高質(zhì)量的詞向量表示,同時(shí)考慮到計(jì)算效率和效果。以下關(guān)于這兩種詞向量模型的比較,哪一項(xiàng)是不準(zhǔn)確的?()A.Word2Vec可以通過(guò)CBOW和Skip-gram兩種方式訓(xùn)練,靈活性較高B.GloVe基于全局的詞共現(xiàn)統(tǒng)計(jì)信息,能夠捕捉更全局的語(yǔ)義關(guān)系C.Word2Vec訓(xùn)練速度較慢,不適用于大規(guī)模數(shù)據(jù)集D.GloVe在某些任務(wù)上可能比Word2Vec表現(xiàn)更好,但具體效果取決于數(shù)據(jù)和任務(wù)5、在一個(gè)客戶(hù)流失預(yù)測(cè)的問(wèn)題中,需要根據(jù)客戶(hù)的消費(fèi)行為、服務(wù)使用情況等數(shù)據(jù)來(lái)提前預(yù)測(cè)哪些客戶(hù)可能會(huì)流失。以下哪種特征工程方法可能是最有幫助的?()A.手動(dòng)選擇和構(gòu)建與客戶(hù)流失相關(guān)的特征,如消費(fèi)頻率、消費(fèi)金額的變化等,但可能忽略一些潛在的重要特征B.利用自動(dòng)特征選擇算法,如基于相關(guān)性或基于樹(shù)模型的特征重要性評(píng)估,但可能受到數(shù)據(jù)噪聲的影響C.進(jìn)行特征變換,如對(duì)數(shù)變換、標(biāo)準(zhǔn)化等,以改善數(shù)據(jù)分布和模型性能,但可能丟失原始數(shù)據(jù)的某些信息D.以上方法結(jié)合使用,綜合考慮數(shù)據(jù)特點(diǎn)和模型需求6、在一個(gè)圖像識(shí)別任務(wù)中,數(shù)據(jù)存在類(lèi)別不平衡的問(wèn)題,即某些類(lèi)別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類(lèi)別。以下哪種處理方法可能是有效的?()A.過(guò)采樣少數(shù)類(lèi)樣本,增加其數(shù)量,但可能導(dǎo)致過(guò)擬合B.欠采樣多數(shù)類(lèi)樣本,減少其數(shù)量,但可能丟失重要信息C.生成合成樣本,如使用SMOTE算法,但合成樣本的質(zhì)量難以保證D.以上方法結(jié)合使用,并結(jié)合模型調(diào)整進(jìn)行優(yōu)化7、假設(shè)正在開(kāi)發(fā)一個(gè)自動(dòng)駕駛系統(tǒng),其中一個(gè)關(guān)鍵任務(wù)是目標(biāo)檢測(cè),例如識(shí)別道路上的行人、車(chē)輛和障礙物。在選擇目標(biāo)檢測(cè)算法時(shí),需要考慮算法的準(zhǔn)確性、實(shí)時(shí)性和對(duì)不同環(huán)境的適應(yīng)性。以下哪種目標(biāo)檢測(cè)算法在實(shí)時(shí)性要求較高的場(chǎng)景中可能表現(xiàn)較好?()A.FasterR-CNN,具有較高的檢測(cè)精度B.YOLO(YouOnlyLookOnce),能夠?qū)崿F(xiàn)快速檢測(cè)C.SSD(SingleShotMultiBoxDetector),在精度和速度之間取得平衡D.以上算法都不適合實(shí)時(shí)應(yīng)用8、在進(jìn)行特征工程時(shí),如果特征之間存在共線(xiàn)性,即一個(gè)特征可以由其他特征線(xiàn)性表示,以下哪種方法可以處理共線(xiàn)性?()A.去除相關(guān)特征B.對(duì)特征進(jìn)行主成分分析C.對(duì)特征進(jìn)行標(biāo)準(zhǔn)化D.以上都可以9、在進(jìn)行模型選擇時(shí),除了考慮模型的性能指標(biāo),還需要考慮模型的復(fù)雜度和可解釋性。假設(shè)我們有多個(gè)候選模型。以下關(guān)于模型選擇的描述,哪一項(xiàng)是不正確的?()A.復(fù)雜的模型通常具有更高的擬合能力,但也更容易過(guò)擬合B.簡(jiǎn)單的模型雖然擬合能力有限,但更容易解釋和理解C.對(duì)于一些對(duì)可解釋性要求較高的任務(wù),如醫(yī)療診斷,應(yīng)優(yōu)先選擇復(fù)雜的黑盒模型D.在實(shí)際應(yīng)用中,需要根據(jù)具體問(wèn)題和需求綜合權(quán)衡模型的性能、復(fù)雜度和可解釋性10、在一個(gè)強(qiáng)化學(xué)習(xí)場(chǎng)景中,智能體在探索新的策略和利用已有的經(jīng)驗(yàn)之間需要進(jìn)行平衡。如果智能體過(guò)于傾向于探索,可能會(huì)導(dǎo)致效率低下;如果過(guò)于傾向于利用已有經(jīng)驗(yàn),可能會(huì)錯(cuò)過(guò)更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學(xué)習(xí)率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓(xùn)練的輪數(shù)11、機(jī)器學(xué)習(xí)中,批量歸一化(BatchNormalization)的主要作用是()A.加快訓(xùn)練速度B.防止過(guò)擬合C.提高模型精度D.以上都是12、在一個(gè)回歸問(wèn)題中,如果數(shù)據(jù)存在多重共線(xiàn)性,以下哪種方法可以用于解決這個(gè)問(wèn)題?()A.特征選擇B.正則化C.主成分回歸D.以上方法都可以13、在一個(gè)強(qiáng)化學(xué)習(xí)問(wèn)題中,如果環(huán)境的狀態(tài)空間非常大,以下哪種技術(shù)可以用于有效地表示和處理狀態(tài)?()A.函數(shù)逼近B.狀態(tài)聚類(lèi)C.狀態(tài)抽象D.以上技術(shù)都可以14、在機(jī)器學(xué)習(xí)中,模型評(píng)估是非常重要的環(huán)節(jié)。以下關(guān)于模型評(píng)估的說(shuō)法中,錯(cuò)誤的是:常用的模型評(píng)估指標(biāo)有準(zhǔn)確率、精確率、召回率、F1值等。可以通過(guò)交叉驗(yàn)證等方法來(lái)評(píng)估模型的性能。那么,下列關(guān)于模型評(píng)估的說(shuō)法錯(cuò)誤的是()A.準(zhǔn)確率是指模型正確預(yù)測(cè)的樣本數(shù)占總樣本數(shù)的比例B.精確率是指模型預(yù)測(cè)為正類(lèi)的樣本中真正為正類(lèi)的比例C.召回率是指真正為正類(lèi)的樣本中被模型預(yù)測(cè)為正類(lèi)的比例D.模型的評(píng)估指標(biāo)越高越好,不需要考慮具體的應(yīng)用場(chǎng)景15、在一個(gè)文本分類(lèi)任務(wù)中,使用了樸素貝葉斯算法。樸素貝葉斯算法基于貝葉斯定理,假設(shè)特征之間相互獨(dú)立。然而,在實(shí)際的文本數(shù)據(jù)中,特征之間往往存在一定的相關(guān)性。以下關(guān)于樸素貝葉斯算法在文本分類(lèi)中的應(yīng)用,哪一項(xiàng)是正確的?()A.由于特征不獨(dú)立的假設(shè),樸素貝葉斯算法在文本分類(lèi)中效果很差B.盡管存在特征相關(guān)性,樸素貝葉斯算法在許多文本分類(lèi)任務(wù)中仍然表現(xiàn)良好C.為了提高性能,需要對(duì)文本數(shù)據(jù)進(jìn)行特殊處理,使其滿(mǎn)足特征獨(dú)立的假設(shè)D.樸素貝葉斯算法只適用于特征完全獨(dú)立的數(shù)據(jù)集,不適用于文本分類(lèi)16、假設(shè)正在進(jìn)行一個(gè)圖像生成任務(wù),例如生成逼真的人臉圖像。以下哪種生成模型在圖像生成領(lǐng)域取得了顯著成果?()A.變分自編碼器(VAE)B.生成對(duì)抗網(wǎng)絡(luò)(GAN)C.自回歸模型D.以上模型都常用于圖像生成17、在進(jìn)行模型評(píng)估時(shí),除了準(zhǔn)確率、召回率等指標(biāo),還可以使用混淆矩陣來(lái)更全面地了解模型的性能。假設(shè)我們有一個(gè)二分類(lèi)模型的混淆矩陣。以下關(guān)于混淆矩陣的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.混淆矩陣的行表示真實(shí)類(lèi)別,列表示預(yù)測(cè)類(lèi)別B.真陽(yáng)性(TruePositive,TP)表示實(shí)際為正例且被預(yù)測(cè)為正例的樣本數(shù)量C.假陰性(FalseNegative,F(xiàn)N)表示實(shí)際為正例但被預(yù)測(cè)為負(fù)例的樣本數(shù)量D.混淆矩陣只能用于二分類(lèi)問(wèn)題,不能用于多分類(lèi)問(wèn)題18、考慮一個(gè)回歸問(wèn)題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預(yù)測(cè)值與真實(shí)值之間的MSE較大,這意味著什么()A.模型的預(yù)測(cè)非常準(zhǔn)確B.模型存在過(guò)擬合C.模型存在欠擬合D.無(wú)法確定模型的性能19、在一個(gè)信用評(píng)估模型中,我們需要根據(jù)用戶(hù)的個(gè)人信息、財(cái)務(wù)狀況等數(shù)據(jù)來(lái)判斷其信用風(fēng)險(xiǎn)。數(shù)據(jù)集存在類(lèi)別不平衡的問(wèn)題,即信用良好的用戶(hù)數(shù)量遠(yuǎn)遠(yuǎn)多于信用不良的用戶(hù)。為了解決這個(gè)問(wèn)題,以下哪種方法是不合適的?()A.對(duì)少數(shù)類(lèi)樣本進(jìn)行過(guò)采樣,增加其數(shù)量B.對(duì)多數(shù)類(lèi)樣本進(jìn)行欠采樣,減少其數(shù)量C.為不同類(lèi)別的樣本設(shè)置不同的權(quán)重,在損失函數(shù)中加以考慮D.直接使用原始數(shù)據(jù)集進(jìn)行訓(xùn)練,忽略類(lèi)別不平衡20、在構(gòu)建一個(gè)機(jī)器學(xué)習(xí)模型時(shí),如果數(shù)據(jù)中存在噪聲,以下哪種方法可以幫助減少噪聲的影響()A.增加正則化項(xiàng)B.減少訓(xùn)練輪數(shù)C.增加模型的復(fù)雜度D.以上方法都不行二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)機(jī)器學(xué)習(xí)在群體遺傳學(xué)中的應(yīng)用是什么?2、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在電商中的客戶(hù)行為分析。3、(本題5分)機(jī)器學(xué)習(xí)在影視制作中的特效生成是如何實(shí)現(xiàn)的?4、(本題5分)機(jī)器學(xué)習(xí)中如何訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)?5、(本題5分)說(shuō)明機(jī)器學(xué)習(xí)在合成生物學(xué)中的設(shè)計(jì)優(yōu)化。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)通過(guò)醫(yī)學(xué)圖像處理數(shù)據(jù)輔助醫(yī)學(xué)診斷和治療。2、(本題5分)借助生物數(shù)學(xué)模型數(shù)據(jù)模擬生物過(guò)程和預(yù)測(cè)生物現(xiàn)象。3、(本題5分)使用Adaboost算法對(duì)圖像中的數(shù)字進(jìn)行識(shí)別。4、(本題5分)利用鳥(niǎo)類(lèi)學(xué)數(shù)據(jù)保護(hù)鳥(niǎo)類(lèi)和研究鳥(niǎo)類(lèi)生態(tài)。5、(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論