版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
August2024
ExpertInsights
PERSPECTIVEONATIMELYPOLICYISSUE
NICOLASM.ROBLES,ELIEALHAJJAR,JESSEGENESON,ALVINMOON,CHRISTOPHERSCOTTADAMS,KRISTINJ.LEUSCHNER,JOSHUASTEIER
UsingArtificialIntelligenceand
QuantumComputingtoEnhance
U.S.DepartmentofHomeland
SecurityMissionCapabilities
T
heU.S.DepartmentofHomelandSecurity(DHS)isthethird-largestcabinetdepartmentinthefederalgovernment,bringingtogethermultiplecompo-
nents,includingtheFederalEmergencyManagementAgency(FEMA),the
CounteringWeaponsofMassDestruction(WMD)Office,theU.S.CoastGuard(USCG),andtheU.S.SecretService(USSS),amongothers.Thesecomponentsarechargedwithcarryingoutadiversearrayofmissions:protectingtheUnitedStatesagainstterrorism,securingU.S.borders,securingcyberspaceandcriticalinfrastruc-ture,preservingU.S.economicsecurity,andstrengtheningdisasterpreparednessandresilience.1Tosuccessfullyachievethesemissions,DHSmustleveragetechnolo-giestothefullestextentpossible.
DHSemployswell-testedtechnologiestomanagethecomplexityandresourcethecostsofitsmissions.However,twopowerfulemergingtechnologies—artificial
2
Abbreviations
AIartificialintelligence
CBPU.S.CustomsandBorderProtection
CISACybersecurityandInfrastructureSecurity
Agency
DHSU.S.DepartmentofHomelandSecurity
FEMAFederalEmergencyManagementAgency
GPTgenerativepretrainedtransformer
GREGraduateRecordExamination
LLMlargelanguagemodel
MLmachinelearningNNneuralnetwork
PDEpartialdifferentialequation
PQCpostquantumcryptography
QCquantumcomputing
QKDquantumkeydistribution
QMquantummechanics
QMLquantummachinelearning
QSquantumsensing
QSVMquantumsupport-vectormachine
SVMsupport-vectormachine
TSATransportationSecurityAdministration
UAVuncrewedaerialvehicle
USCGU.S.CoastGuard
USSSU.S.SecretService
WMDweaponsofmassdestruction
intelligence(AI)andquantumcomputing(QC)—mighthavethepotentialtosignificantlyexpandthecapabilitiesavailabletoDHSinthefuture.AI—inparticular,itssubfieldofmachinelearning(ML)—isanumbrellaconceptofusingcomputerstorapidlysolveproblemsforwhichthedevelop-mentofalgorithmsbyhumanprogrammerswouldbecost-prohibitiveorotherwiseextremelydifficult(Murphy,2012).
QCattemptstoleveragetheprinciplesofquantummechan-ics(QM)toobtainquantifiableadvantagesovertraditionalcomputing,bothintermsofspeedandintheabilitytosolveverycomplexproblems.Unlikepreviousleapsintheprog-ressoradvancementofscience,suchasthenuclearprogramorthespaceprogram,whichwerestatesponsored,QCis,forthemostpart,incentivizedandpioneeredbyprivateandfor-profitcompaniesandbyacademicinstitutions(Parker,2021;Parkeretal.,2022).AIismorematurethanQCasadomain,andresearchinAIisdistributedwidelythroughacademiaandindustry.
Althoughthefullpotentialofthesetechnologiesisfarfrombeingrealized,DHScanpositionitscomponentstotakeadvantageoffutureadvancementsbyconsideringhowmatureQC-andAI-basedtechnologiesmightbeusedtoaffectDHSmissionoutcomes.Inthispaper,wearguethat
QCandAItools—iftheirpotentialisrealized—couldsupportDHSmissions,makingDHSmoreeffectiveandefficientandimprovingthelivesofDHSstaffandotherstakeholders.
Ourpredictionsarecontingentonwhethersuccess-fulquantumMLalgorithmscanbediscovered(i.e.,shownmathematicallyorempiricallytobeadvantageousovertheirclassicalcounterparts)andonwhethertheycanrunsmoothlyonpracticalquantumdevices.2Bothissuesarethesubjectofveryintensecutting-edgeresearch.
Inthispaper,webrieflyexplaintheconceptsofQCandAIandthendiscusspotentialapplicationstoDHS’smis-sions.WeconcludethepaperwithrecommendationsonhowDHScouldbestpositionitselftoleverageQCandpre-pareitsworkforce.
3
QuantumComputingandArtificialIntelligence
Astwofieldsofscienceandtechnology,bothAIandQChavegainedextremepopularityinadditiontotheiraccep-tanceinthescientificcommunity.AIhasprovedtobeavaluabletoolinmodernscienceandcomputing.QC,whichitselfisasubfieldofthewiderquantuminformationsciencediscipline,isatanearlierstageofdevelopmentthanAIisbutisstrivingtocatchupwithitsAIcousin.Inthepastdecadeorso,therehavebeenmanyattemptsatmergingthepromisedadvantagesofQCintothefieldofAI,although,todate,theseattemptshavemetwithmixedsuccess(SchuldandPetruccione,2018;seealsoBiamonteetal.,2017).
QuantumComputing
QCattemptstoleveragequantummechanicalphenomena,suchassuperposition,entanglement,andinterference,toobtainquantifiableadvantagesovertraditional,orclassi-cal,computing.QM—thetheoreticalbasisofQC—isoneofthemostsuccessfultheoriesof20th-centuryphysics,withexperimentaltestsverifyingitsvaliditytoincrediblepreci-sion(GriffithsandSchroeter,2018;Sakurai,1994).QMisafundamentaltheoryofnaturethatdescribesthesubatomicworldinwhichclassical(i.e.,Newtonian)physicsfails.Forinstance,inQC,thefamiliarnotionofaninformationbitbeingexclusivelyoff(0)oron(1)nolongerholds.Aquan-tumbit,knownasaqubit,existsinasuperpositionofoffandonsimultaneously—onlyuponmeasurementofaqubitisitforcedtotakeadefinite0or1valuewithspecificprob-abilities,therebycollapsingintoabit.
Thissuperpositionallowsforquantumparallelism,whichistheabilityofquantumcomputerstoevaluateafunctionformultipleinputvaluessimultaneously.Thekeytomanyprovenspeedupsinquantumalgorithmsispre-ciselythisparallelism(DeutschandJozsa,1992;NielsenandChuang,2010).Indeed,thisisagamechangerbecausethesolutionstoverycomplexproblemscannowbeencodedinaregistryofqubits,andresearcherscanextractthedesiredsolutionorpropertiesfromthesequbitsinacontrolledway.
Toproceedwiththisextraction,researchersmustturntheirattentiontootheruniquenotionsthatdonothaveclas-sicalcounterparts,suchasentanglementandinterference.3OneoutstandingexampleofsuchaspeedupandextractionprocedureisShor’salgorithmforprimefactorization,whichfindsprimefactorsofanintegerwithasuperpolynomialspeedup—animprovementoverthebest-knownclassicalalgorithms.4Thishasveryseriousimplicationsincryptog-raphy;asaconsequence,theNationalInstituteofStandardsandTechnologyisstudyinganewarrayofpostquantumcryptography(PQC)algorithmsthatdonotdependoninte-gerfactorization.5
However,theadvantagesofQCoverclassicalcomput-ingarenotstraightforward.Incertainsituations,ratherthansupplyingasuperpolynomialspeedup,QCprovidesamoremodestquadraticspeedup.Awell-studiedsearchalgorithmknownasGrover’salgorithmissuchaninstance.ManyofthequantumalgorithmsthatwediscussinthispaperfallintothequadraticspeedupcategorybecausetheyarederivativesofGrover’salgorithm.Effectively,thismeansthat,ifaclassicalalgorithmrequiresNiterationstoproducearesultwithacertainaccuracy,aquantumalgorithmcould
producethissameresultinonlyO(√)iterations,thereby
providingaquadraticspeedupinruntime.6
4
Thenextgenerationofoperatingsystemsshouldbeabletodeterminewhichtasksshouldbesolvedbyclassicalprocessingunitsandwhichtasksshouldbeoutsourcedtoquantumprocessingunits.
Asaresult,quantumcomputersarenotall-purposecomputersthatwillsomedayreplaceordinarycomputers.Quantumcomputerswilllikelybeemployedprimarilyinthemost-taxingoperationsandthosemostpronetocre-atingbottlenecks(e.g.,Kothari,2020).Indeed,onecouldthinkofquantumdevicesasbeingpowerfulenginesinalargechainofprocesses.Therefore,orchestrationacrosscomputingapproacheswillbekey.Thenextgenerationofoperatingsystemsshouldbeabletodeterminewhichtasksshouldbesolvedbyclassicalprocessingunits(includinghigh-performancecomputersandgraphics-processingunits)andwhichtasksshouldbeoutsourcedtoquantumprocessingunits.Evenoncequantumcomputerswork,therewillprobablybeabreakevenpointatwhichthequan-tumcomputerisworthwhileonlyfortasksthatarebiggerthansomethreshold.
HardwarealsoplacesconstraintsonQC.Severaltech-nologiesandengineeringparadigmsexisttoproducework-ingqubits:superconductors,iontraps,photonics,annealers,neutral-atomtraps,silicon-spinqubits,and(morespecu-latively)topologicalqubitsandnitrogen-vacancycenters.Thesetechnologies(exceptforannealers)sharethesamearchitecture,whichisknownasuniversalgate-basedcom-
puting.Currentdevicesfromprivate-sectorcompanies,federallyfundedresearchanddevelopmentcenters,anduniversitiesproduceverynoisyqubits,soqubitoperationsworksuboptimallyandslowly.Thismeansthat,evenifanalgorithmproducesatheoreticaladvantage,realizingthisadvantagepracticallyisstilldifficultbecausethedevicesarenotyetrobustenough.Certaintechniques,suchaserrormitigationanderrorcorrection,canhelpundothenoisetowhichqubitsarepronebytheirquantumnature.However,thesetechniquesarenotfullydeployableyetandsometimesadduptotheglobaloverheadofthealgorithm,therebyreducingitseffectivenessinsomecases(see,e.g.,GoogleQuantumAI,2023;Mandelbaum,Steffen,andCross,2023;Stamatopoulosetal.,2020;andWoernerandEgger,2019)forcertaintheoreticaloverheadsnotrelatedtoerrorcorrection.Devicesthatareimperfectareknownasnoisy,intermediate-scalequantumcomputers.Annealers,ontheotherhand,haveadifferentarchitecturealtogetherthatisnotgatebasedanddoesnotperformuniversalcalculations,butitexcelsatdiscreteoptimizationandoperationsresearchproblems.7
5
Insum,wenotethefollowingaboutthecurrentstatusofQC:
?TheonlyknownQCalgorithmforAIandMLisGrover’salgorithm.
?ThetheoreticalspeedupofGrover’salgorithmismodestandmightwellbewashedoutbyallneces-saryhardwareoverhead.
?OtherQCalgorithmsforAIandMLmightariseinthefuture,butwhethertheywillisstillunknown.
QuantumComputingandMachineLearning
ThesuccessesofAIarewelldocumented,andAIhasbecomeanindispensabletoolinmoderncomputing,whetherforcommercial,military,orsecurityapplications,asillustratedinKrelina(2021)andQuantumWorkingGroup(2021).ItthusbecomesnaturaltoaskwhetherQCcanfurtherboostMLbyprovidingadvantagesoverclassicalcomput-ing.GiventhesuccessofQMinphysicsontheonehandandthesuccessofMLincomputingontheotherhand,theexpectationsofquantumML(QML)are,ingeneral,dis-proportionatelyhuge(SchuldandPetruccione,2018).ButalthoughthecommercialandbusinessimplicationsofQMLarenowbeingexploredandaddressed,theresultshavenotyetmatchedtheexpectations.
Formany,AImeansMLforbigdata.Thisis,however,oneoftheapplicationsofAIforwhichQCistheleastuseful.AnyapplicationofquantumalgorithmsforthattypeofAIisprobablystillfarinthefuture,giventheneedforhardwareresources(memory,gatespeed,andotherconceptswedis-cussinthispaper)andbecauseitisnotknownyetwhetherQCwouldspeedupthatkindofAIeveninprinciplebecauseofsuchissuesasdata-loading,aswediscusslater.
AssumptionsUnderlyingThisPaper
Astheprecedingdiscussionillustrates,manytechnicalchal-lengeswithAIandQCremaintobesolved.Despitetheseissues,ingeneral,thispaperdoesnotfocusontimelinesorcurrenttechnologyreadinessbecauseAIandQCarestillintheprocessofmaturing.OurviewsonhowquantumtechnologiescouldenhanceAItechniquesarelargelyinde-pendentoftheunderlyingtechnologyusedtoproducethequantumdevicesonwhichtheseQMLalgorithmsaregoingtoberun.Instead,forthispaper,weassumetheexistenceofaworking,orclose-to-working,fault-tolerantquantumcomputer,focusingonwhattheexistenceofsuchatechnol-ogycouldmeanforDHScapabilities.
DHShaspubliclyexpressedinterestinquantumonlyforPQC(DHS,2022).OurviewssuggestthatDHScouldexpandtheseinterestsintootherquantumsubjects,suchasQCandquantumsensing(QS).Informedbyourinvestiga-tions,literaturereview,andprofessionalexperience,weputforwardintheconclusionasetofideasandrecommenda-tionsthatcouldassistDHSinleveragingQCsuccessfullytoprotecttheUnitedStates.
U.S.DepartmentofHomelandSecurityMissions
PerTheDHSStrategicPlan:FiscalYears2020–2024(DHS,2019),thedepartmenthassixprimarygoals:
?Counterterrorismandhomelandsecuritythreats.
?SecureU.S.bordersandapproaches.
?Securecyberspaceandcriticalinfrastructure.
?PreserveandupholdU.S.prosperityandeconomicsecurity.
6
?Strengthenpreparednessandresilience.
?ChampiontheDHSworkforceandstrengthenthedepartment.
Foreachofthesegoals,weprovidesomespecificexam-plesofhowAIorMLcouldaffectDHS’scapabilities.TheconclusionsinthispaperarebasedonourfamiliaritywiththescientificliteratureonQCandAIandonourpreviousandongoingpeer-reviewedscholarship.Whenpossible,wemaketheconnectiontoQMLanddevelopthepotentialbenefitsofprovidingquantumbooststoMLtasks.Notallinstancesoftechnologies’impactwillbepositive,and,inafewinstances,classicaltechniquesaremorethanenoughtoprovidetheneededcapabilitiesorQCsimplyfailstodeliveradvantagesoverclassicalmethods.
Asacaution,weemphasizethatourattemptsatfindinginstancesofprofitableusesofQMLhavenotbeenexhaus-tive,sotherecouldbeotherexamplesorsituationsinwhichquantumadvantagescouldbeimportantforotherDHSactivitiesthatarenotcontemplatedinthispaper.
Beforeproceeding,wementionthebalancethatmustbeachievedtoproduceapaperthatisinformativewithoutbeingexcessivelytechnical.WestrovetodescriberealisticideasandscenariosinwhichAIandQMcouldbemergedtoalleviatethecomputationaltasksthatDHScomponentsmustcompleteaspartofperformingtheirduties.Moreover,thereisnoshortageoftechnicalsourcesinwhichquantumalgorithmsandroutinesarecarefullyelaborated,andwerefertheinterestedreadertoBarnett(2009);Hidary(2019);NielsenandChuang(2010);RieffelandPolak(2014);Scherer(2019);SchuldandPetruccione(2018);SteebandHardy(2018);andWong(2022).However,thesesourcestendtoemphasizethequantitativeaspectsofthesealgorithmsand
largelyignorepotentialapplicationsinindustry,military,andsecurity.
CounterTerrorismandHomelandSecurityThreats
ThefirstDHSmissionistocounterterrorismandhomelandsecuritythreats.Thismissionhasfourobjectives:
?Collect,analyze,andshareactionableintelligence.
?Detectanddisruptthreats.
?Protectdesignatedleadership,events,andsofttargets.
?CounterWMDandemergingthreats.
QCandMLtogethercouldhelpDHSaccomplishthesegoalsinanyofseveralways.
Collect,Analyze,andShareActionableIntelligence
DHSaimstodevelop“timelyandactionableintelligencetoaccuratelyassessandpreventthreatsagainsttheUnitedStates”(DHS,2023).AchallengeforprovidingaccurateandactionableintelligenceistheglutofinformationthatDHScomponentsreceive.DHS’sintelligenceanddomainawarenessoperations,includingthoseintheOfficeofIntel-ligenceandAnalysis,theUSCG,andtheNationalOpera-tionsCenter,mustidentifythreatsbysiftingthroughtensofthousandsofvesselsoperatinginU.S.waters,thousandsofflightsinU.S.airspace,andthousandsoftipsandalertsfil-teringupfromstateandlocalpartners,almostallofwhichareinnocuousnoise.AlthoughDHSreceivesahugevolumeofinformation,itdoesnotcollectthatinformationopti-
7
AchallengeforprovidingaccurateandactionableintelligenceistheglutofinformationthatDHS
componentsreceive.
mally,pullinginalotofnoiseinawaythatrisksmissingimportantsignals.
MLapproaches,potentiallyenabledbyQC,couldtrainonthesedataandhelpDHSintelligenceagentsmorequicklyandaccuratelyidentifytheneedleinthehaystackofinformationtheyhandleeveryday.Largelanguagemodels(LLMs)arealreadyadeptatintegrationandanalysisoflargedatasets,asevidencedbytheperformanceofGenerativePretrainedTransformer(GPT)4onnumerousbenchmarkexams.QCcouldhelpoptimizeintelligencecollection,suchasfromUSCGpatrolsorU.S.CustomsandBorderProtec-tion(CBP)searches,tobetterinformintelligenceoperations.Furthermore,likewedowithproblemsinquantumchem-istry,quantumfinance,andgraphtheory,weexpectthatLLMscouldbeusedtodesigntailor-madequantumarchi-tecturesfortheseintelligencecollectionproblemsbyusingpriorknowledgefromtherelevantresearchcommunities.
DetectandDisruptThreats
AnothercomponentoftheDHSmissiontocounterterror-ismandhomelandsecuritythreatsistodetectanddisruptthreats,suchasthroughtheactionsthattheTransporta-tionSecurityAdministration(TSA)takestosecureairportsandairplanes.Asstatedearlier,matureQCshouldbeable
torapidlyoptimizepatrol,search,andscanstrategiesatcheckpoints,atcriticalinfrastructurelocations,andalongthebordersandapproaches.Theseinnovationswouldaidnotonlyinimprovingdatacollectionforfutureintelligencedevelopmentbutalsoindetectinganddisruptinganyactivethreatsinthepresent.
ProtectDesignatedLeadership,Events,andSoftTargets
TheUSSShastheprimaryroleinprotectingleadership,events,andsofttargetsforthedepartmentinmostcases,althoughtheFederalProtectiveServiceandtheOfficeofHomelandSecuritySituationalAwarenessalsoplayrolesintheprotectionoffederalbuildingsandevents,respectively.Akeytaskforeachofthesecomponentsistoconductriskassessments(ofevents,facilities,andpersonnel)tooptimizethelevelofprotectionthateachreceives,givenlimitedpro-tectionresources.
AnexampleofsuchariskassessmentistheSpecialEventAssessmentRatingsystem,whichdetermineswhatfederalprotectiveassistanceisneededforprivateevents.Theseassessmentsarecurrentlyconductedusingamixofdataanalysisandhumanjudgment,buttheadditionofQCandMLcouldintegratemanymoredatafeedsintothe
8
analysis,thusprovidingamorenuancedandoptimizeddistributionoffederalresourcesandpersonnel.ThiswouldallowDHStoprotectmoreevents,facilities,andpersonnelandprovidebetterassistancetothoseitcurrentlyprotects.
Duringprotectionoperations,thereareadditionalopportunitiesfortheapplicationoftheseemergingtechnol-ogies,includingtheclassificationoftargetsofinterest(e.g.,ataprotectedevent).Forinstance,noisy,intermediate-scalequantumdevicescouldbeusedtotrainaquantumcircuitforclassificationtasksusingexponentiallyfewerparam-etersthanaclassicalneuralnetwork(NN)wouldrequireforthesametask,withapparentlyminimalreductioninperformance(Schuldetal.,2020).Anotherexampleisthatfault-tolerantQCdevicescouldbeappliedtospeedupclas-sificationtasksbyutilizingthemanyquantumalgorithmsforlinearalgebraicroutinesthathavebeendevelopedintheliterature(Cao,Romero,andAspuru-Guzik,2018).Thesecouldbeexecutedeithercentrallyatacommandcenterbasedonsensorfeedsor,inthemoredistantfuture,attheedgebythesensorsthemselves.
Toidentifytargetsquicklyenoughthatactioncanbetakentopreventdangertoleadershipandevents,searchalgorithmsmusthavesufficientlylowrunningtimeandbeusableincombinationwithclassificationalgorithms.Thequantummechanicalpropertiesofinformation,includ-ingentanglementandsuperposition,havethepotentialtoquadraticallyreducetherunningtimeofsearchalgorithms.LLMscanbeusedtodesignnovelquantumarchitecturesthataretailoredtovariousproblems,soanLLM-designedquantumarchitecturetailoredtotheproblemofsearchingforpotentialtargetswouldbeespeciallyusefulinprotectingdesignatedleadership,events,andsofttargets.
CounterWeaponsofMassDestruction
DHSworksto“deter,detect,anddisrupttheuseofweaponsofmassdestruction(WMD)andhealthsecuritydangersasearlyinthethreatpathwayaspossible”(DHS,2019,p.16).ThisincludesemplacingdetectioncapabilitiesatportsofentryandacrosstheUnitedStatesandworkingwithinter-nationalpartnerstosecurepotentiallydangeroussubstancesandprecursors.
ImprovementsindetectioncapabilitiesforWMDusingQCcouldenhanceDHS’sabilitytodisruptWMDpathwaysathomeandabroad.OneapproachtointegratingQCcapa-bilitieswouldinvolvesendingdatafromclassicalsensorstoacentralizedQCcapability.However,thiswouldnecessi-tatethetransformationofdatafromclassicaltoquantumsothatthedatacouldbeusedinaquantumalgorithm.Thistransformation—usuallytermedloadingdataontoaquan-tumdevice—isanexpensiveprocess.Ontheotherhand,ifthedatawerealreadyinquantumform,suchasdatacol-lectedfromaquantumsensor(Krelina,2021;QuantumWorkingGroup,2021),and,ifaquantumalgorithmcouldbedeployedalmostimmediatelyonthisdata,thedata-loadingproblemcouldbebypassed.ThisQSwouldallowCBP,theCounteringWMDOffice,andotherstodetectchemical,biological,radiological,andnuclearthreatsmorequicklyandmoreeffectivelyandtobetterresolvealarmsinthefield.Althoughthismergingconceptisstillexperi-mental,suchacapabilitybeingevenpartiallyrealizedcouldsignificantlyboostthebenefitsofdetectingthesetypesofthreatsatportsofentryorinmetropolitanareas.
AnotheraspectofDHS’scounter-WMDeffortsishorizon-scanningforthreatsfromemergingtechnologies—includingpotentialthreatsresultingfromtheuseofQC,ML,andAI.Forinstance,quantumalgorithmsmightbe
9
AnLLM-designedquantumarchitecturetailoredtotheproblemofsearchingforpotentialtargetswouldbe
especiallyusefulinprotectingdesignatedleadership,events,andsofttargets.
employedtoacceleratethesynthesisofpoisons,nerveagents,biotechnologies,anddrugsthatareharmfulorillegal.
Theseemergingtechnologiescouldalsohavethepoten-tialtocounterthesamethreatsthattheyunleash.Forinstance,QCandAIcouldbeusedtodesigndrugstocoun-tertheeffectsofWMDandotherthreats.ManyadvancesindrugdesignhavecomefromAI—specifically,deepNNsandsupport-vectormachines(SVMs),whichuselargedatasetswiththousandsofmoleculardescriptors.BecausetheseMLalgorithmsarecomputationallyexpensive,therehasbeenarecentpushtousequantumcomputerstoaccelerateMLfordrugdesign.Forthistowork,thesetofmoleculardescrip-torsmustbecompressedforusewithaquantumcomputer. Recentresearchhasuncoveredamethodforcompress-inguptohundredsofthousandsofmoleculesforusewithSVMsanddata-reuploadingclassifiersonaquantumcom-puter(Batraetal.,2021).KushalBatraandhiscolleaguesconsideredsetsofmoleculardescriptorsrepresentingcoro-navirusdisease2019(COVID-19),plague(Yersiniapestis),andtuberculosis.Otherresearchinthisareahasexploitedthefactthatquantum-gateparameterexplorationoffersanadvantageoverNNparameterexplorationbecausetheprobabilisticnatureofquantumsystemsenablesgeneration
ofmoleculesthatwouldnotbeexploredbyaclassicalgen-erativeadversarialnetwork(Lietal.,2021).ThisideawasusedtodevelopnewQMLtechniquesfordrugdiscovery,includingaquantumgenerativeadversarialnetworkthatlearnspatternsfromthesetofmoleculardescriptorsandgeneratessmalldrugmoleculesandaquantumvariationalautoencoderthatperformsaprobabilisticsearchtogeneratelargedrugmolecules.AlthoughDHSwouldnotnecessarilydirectlyemploythesemethodstogeneratenewdrugsandcures,itcouldbenefitfromthemandcouldpreparetohelpdistributetheminanemergency.
SecureU.S.BordersandApproaches
DHShasacriticalmissiontosecureU.S.bordersandenforcecustomsandimmigrationlaws.Thismissioniscomplex,inlargepartbecauseofthesheersizeoftheinterfacebetweenU.S.bordersandtherestoftheworld.Forinstance,CBPactivelymonitorsthousandsofmilesofterritorialbordersand328portsofentry(CBP,2023),whiletheUSCGpatrols4millionsquaremilesofterritorialwatersandexclusiveeco-
10
AsAIadvancesfurther,theneedforahumanpilotmightberelaxed,anduncrewedsystemscouldactastrue
resourcemultipliersforCBP’slimitedhumancapital.
nomiczones(NationalOceanicandAtmosphericAdminis-tration,undated).
SecureandManageAir,Land,andMaritimeBorders
Giventhescopeofitsmission,CBPhasaworkforcechal-lengealongboththenorthernandsouthernborders:CBPhastoofewagentsconductingtoofewpatrolsacrosstoomuchborderarea.Currentoperationsarepersonnelinten-sive,requiringhumanpatrolsbetweenportsofentryatallhoursofthedayandnight.ThisworkforcerequirementhascompoundedbecauseofCBP’sdifficultyinretainingborderagents(see,e.g.,Gambler,2019)andtheincreasednumberofrefugeefamiliesattemptingtocrosstheborder,whichdivertsCBPresourcesawayfromlawenforcementandtowardmigrantaidandarrest(Morgan,2019).
Tocounteractthisshortage,CBPhasbeguntoemployautonomouscapabilities,andadvancesinQCandAIcouldfurtherempowerthesesystems.Since2012,CBPhasusedlargerMQ-9uncrewedaircrafttoconductchange-detectionsweepsalongthesouthernborder(CBP,2022).Inaddition,CBPhasalsobeguntousesmall,uncrewed
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版健身房空氣質(zhì)量改善合同2篇
- 銅礦股份轉(zhuǎn)讓合同協(xié)議
- 柳州工學(xué)院《臨床生物化學(xué)檢驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年標(biāo)準(zhǔn)電動(dòng)機(jī)購(gòu)銷(xiāo)合同范本一
- 2024事業(yè)單位編制人員正式勞動(dòng)合同范本編制人員錄用規(guī)范6篇
- 2024版兒童服裝行業(yè)人才培養(yǎng)合作協(xié)議3篇
- 2024年醫(yī)療援助出國(guó)合同2篇
- 2024年標(biāo)準(zhǔn)無(wú)子離婚合同書(shū)示例版B版
- 2024年度寵物用品采購(gòu)及銷(xiāo)售合同3篇
- 全國(guó)青島版信息技術(shù)八年級(jí)下冊(cè)專(zhuān)題青春歲月紀(jì)念冊(cè)第9課二、《視頻的特效處理》教學(xué)實(shí)錄
- 浙江大學(xué)醫(yī)學(xué)院附屬兒童醫(yī)院招聘人員真題
- 2024年江蘇省蘇州市中考數(shù)學(xué)試卷含答案
- 軟件測(cè)試匯報(bào)
- 吉林省長(zhǎng)春市第一〇八學(xué)校2024-2025學(xué)年七年級(jí)上學(xué)期期中歷史試題
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數(shù)字化施工組”賽項(xiàng)考試題庫(kù)
- 初中《孫中山誕辰紀(jì)念日》主題班會(huì)
- 5.5 跨學(xué)科實(shí)踐:制作望遠(yuǎn)鏡教學(xué)設(shè)計(jì)八年級(jí)物理上冊(cè)(人教版2024)
- 屠呦呦課件教學(xué)課件
- 阿斯伯格綜合癥自測(cè)題匯博教育員工自測(cè)題含答案
- 天津市2023-2024學(xué)年七年級(jí)上學(xué)期語(yǔ)文期末試卷(含答案)
- 2024年法律職業(yè)資格考試(試卷一)客觀題試卷及解答參考
評(píng)論
0/150
提交評(píng)論