版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
專題09三角函數(shù)與解三角形小題綜合一、單選題1.(2023·浙江金華·模擬預(yù)測)已知函數(shù)SKIPIF1<0在SKIPIF1<0上有且僅有2個零點,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先化簡SKIPIF1<0,利用整體換元法和零點個數(shù),建立不等式組,求解不等式組可得答案.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0因為SKIPIF1<0在SKIPIF1<0上僅有2個零點,當(dāng)SKIPIF1<0時,SKIPIF1<0(SKIPIF1<0),所以SKIPIF1<0,解得SKIPIF1<0.故選:B.2.(2023·浙江·校聯(lián)考二模)在三角形SKIPIF1<0中,SKIPIF1<0和SKIPIF1<0分別是SKIPIF1<0邊上的高和中線,則SKIPIF1<0(
)A.14 B.15 C.16 D.17【答案】C【分析】將SKIPIF1<0作為基底,用基底表示SKIPIF1<0和SKIPIF1<0,根據(jù)數(shù)量積的規(guī)則計算即可.【詳解】
設(shè)SKIPIF1<0,則有SKIPIF1<0,由余弦定理得SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;故選:C.3.(2023·浙江紹興·統(tǒng)考二模)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)取得一個最大值SKIPIF1<0和一個最小值SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由已知得SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,即可得到結(jié)果.【詳解】因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)取得一個最大值SKIPIF1<0和一個最小值SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:C.4.(2023·??寄M預(yù)測)已知函數(shù)SKIPIF1<0的最小正周期為T,且SKIPIF1<0,若SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】運用二倍角公式化簡SKIPIF1<0,結(jié)合SKIPIF1<0與SKIPIF1<0的對稱性求得SKIPIF1<0的值,進而求得結(jié)果.【詳解】因為SKIPIF1<0,所以SKIPIF1<0.又因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,①又因為SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,②所以由①②得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故選:A.5.(2023·浙江紹興·統(tǒng)考模擬預(yù)測)若函數(shù)SKIPIF1<0的周期為SKIPIF1<0,其圖象由函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位得到,則SKIPIF1<0的一個單調(diào)遞增區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)輔助角公式化簡SKIPIF1<0,由平移可得SKIPIF1<0,進而由周期可得SKIPIF1<0,利用整體法可得單調(diào)區(qū)間即可求解.【詳解】SKIPIF1<0,將SKIPIF1<0向左平移SKIPIF1<0個單位得到SKIPIF1<0,由SKIPIF1<0的周期為SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,所以取SKIPIF1<0可得一個單增區(qū)間為SKIPIF1<0,故選:A6.(2023·浙江·校聯(lián)考模擬預(yù)測)如圖,某同學(xué)到野外進行實踐,測量魚塘兩側(cè)的兩棵大榕樹A,B之間的距離.從B處沿直線走了SKIPIF1<0到達(dá)C處,測得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意,由條件可得SKIPIF1<0,然后結(jié)合正弦定理即可得到結(jié)果.【詳解】由題意可得,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由正弦定理可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:A7.(2023·浙江·校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0的部分圖象如圖所示,其中SKIPIF1<0,圖中函數(shù)SKIPIF1<0的圖象與坐標(biāo)軸的交點分別為SKIPIF1<0,則下列代數(shù)式中為定值的是(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)圖象,由SKIPIF1<0求出SKIPIF1<0,再由M,N點的坐標(biāo)求出SKIPIF1<0為定值.【詳解】由圖象可得,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.故選:D8.(2023春·浙江杭州·高三浙江省杭州第二中學(xué)校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,若存在唯一的實數(shù)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】整理可得SKIPIF1<0,結(jié)合題意結(jié)合正弦函數(shù)性質(zhì)分析運算.【詳解】由題意可得:SKIPIF1<0,且SKIPIF1<0,①因為SKIPIF1<0,可得SKIPIF1<0,若存在唯一的實數(shù)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0;②又因為SKIPIF1<0,且SKIPIF1<0,可得SKIPIF1<0,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,注意到SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0;綜上所述:SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:B.9.(2023·浙江·校聯(lián)考二模)數(shù)學(xué)里有一種證明方法叫做Proofwithoutwords,也被稱為無字證明,是指僅用圖象而無需文字解釋就能不證自明的數(shù)學(xué)命題,由于這種證明方法的特殊性,無字證時被認(rèn)為比嚴(yán)格的數(shù)學(xué)證明更為優(yōu)雅與有條理.如下圖,點SKIPIF1<0為半圓SKIPIF1<0上一點,SKIPIF1<0,垂足為SKIPIF1<0,記SKIPIF1<0,則由SKIPIF1<0可以直接證明的三角函數(shù)公式是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)直角三角形中的定義寫出SKIPIF1<0,用SKIPIF1<0表示出SKIPIF1<0,然后分析可得.【詳解】由已知SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,故選:C.10.(2023·浙江溫州·樂清市知臨中學(xué)??寄M預(yù)測)在函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中,既是奇函數(shù)又是周期函數(shù)的有(
)個A.0 B.1 C.2 D.3【答案】C【分析】設(shè)SKIPIF1<0,SKIPIF1<0,首先判斷出SKIPIF1<0的奇偶性與周期性,再分別判斷SKIPIF1<0的奇偶性與周期性即可.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0上的奇函數(shù),顯然SKIPIF1<0不是周期函數(shù);對于SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),又因為SKIPIF1<0,所以SKIPIF1<0是周期函數(shù);對于SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),又因為SKIPIF1<0,所以SKIPIF1<0是周期函數(shù);對于SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0在定義域內(nèi)為奇函數(shù),又因為SKIPIF1<0,所以SKIPIF1<0是周期函數(shù);綜上所述,SKIPIF1<0,SKIPIF1<0既是奇函數(shù)又是周期函數(shù),故選:C.11.(2023·浙江寧波·鎮(zhèn)海中學(xué)??寄M預(yù)測)趙爽弦圖是中國古代數(shù)學(xué)的重要發(fā)現(xiàn),它是由四個全等直角三角形與一個小正方形拼成的一個大正方形(如圖).已知小正方形的面積為1,直角三角形中較小的銳角為SKIPIF1<0,且SKIPIF1<0,則大正方形的面積為(
)
A.4 B.5 C.16 D.25【答案】D【分析】根據(jù)正切函數(shù)二倍角公式求得SKIPIF1<0,根據(jù)趙爽弦圖直角三角的邊角關(guān)系得兩直角邊長,即可得大正方形的邊長,可求得面積.【詳解】因為SKIPIF1<0,所以SKIPIF1<0由題意小正方形的面積為1,則小正方形的邊長為1,設(shè)直角三角形較短的直角邊為SKIPIF1<0,則較長的直角邊長為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以大正方形的邊長為SKIPIF1<0,故大正方形的面積為SKIPIF1<0.故選:D.12.(2023·浙江·校聯(lián)考三模)在平面直角坐標(biāo)系中,角SKIPIF1<0的頂點在坐標(biāo)原點,始邊與SKIPIF1<0的非負(fù)半軸重合,將角SKIPIF1<0的終邊按逆時針旋轉(zhuǎn)SKIPIF1<0后,得到的角終邊與圓心在坐標(biāo)原點的單位圓交于點SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由題設(shè)易知SKIPIF1<0,利用誘導(dǎo)公式、倍角余弦公式有SKIPIF1<0,即可求值.【詳解】由題設(shè)SKIPIF1<0,由SKIPIF1<0SKIPIF1<0.故選:A13.(2023·浙江·校聯(lián)考模擬預(yù)測)定義SKIPIF1<0設(shè)函數(shù)SKIPIF1<0,可以使SKIPIF1<0在SKIPIF1<0上單調(diào)遞減的SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】分段寫出函數(shù)SKIPIF1<0解析式,并確定單調(diào)遞減區(qū)間,再借助集合的包含關(guān)系求解作答.【詳解】依題意,SKIPIF1<0,函數(shù)SKIPIF1<0的遞減區(qū)間是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,無解;或SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,選項C滿足,ABD不滿足.故選:C14.(2023·浙江·高三專題練習(xí))函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度后對應(yīng)的函數(shù)是奇函數(shù),函數(shù)SKIPIF1<0.若關(guān)于x的方程SKIPIF1<0在SKIPIF1<0內(nèi)有兩個不同的解α,β,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)三角函數(shù)的圖象性質(zhì)、圖象變換和三角恒等變換公式,以及誘導(dǎo)公式求解.【詳解】函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度后,所得函數(shù)的解析式為SKIPIF1<0,因為所得函數(shù)為奇函數(shù),所以SKIPIF1<0,則有SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故選:B.15.(2023·浙江金華·模擬預(yù)測)已知向量SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用向量數(shù)量積的坐標(biāo)公式結(jié)合同角三角函數(shù)的基本關(guān)系化簡即可.【詳解】SKIPIF1<0,從而SKIPIF1<0,于是SKIPIF1<0,從而SKIPIF1<0SKIPIF1<0.故選:A16.(2023·浙江·二模)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的最小值(
)A.與SKIPIF1<0有關(guān),與SKIPIF1<0有關(guān) B.與SKIPIF1<0有關(guān),與SKIPIF1<0無關(guān)C.與SKIPIF1<0無關(guān),與SKIPIF1<0有關(guān) D.與SKIPIF1<0無關(guān),與SKIPIF1<0無關(guān)【答案】B【分析】根據(jù)函數(shù)周期判斷區(qū)間超過一個周期可得與最值的關(guān)系.【詳解】函數(shù)SKIPIF1<0得到SKIPIF1<0,區(qū)間SKIPIF1<0長度超過一個周期,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的最小值SKIPIF1<0,與SKIPIF1<0有關(guān),與SKIPIF1<0無關(guān).故選:B.17.(2023·浙江金華·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,集合SKIPIF1<0中恰有3個元素,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由已知化簡可得SKIPIF1<0,SKIPIF1<0.原題可轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恰有3個解.求出當(dāng)SKIPIF1<0時,SKIPIF1<0的前4個解,即可得出SKIPIF1<0,求解即可得出答案.【詳解】由已知可得,SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.因為集合SKIPIF1<0中恰有3個元素,即函數(shù)SKIPIF1<0在SKIPIF1<0上恰有3個解,即SKIPIF1<0在SKIPIF1<0上恰有3個解.因為,當(dāng)SKIPIF1<0時,SKIPIF1<0的前4個解依次為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以應(yīng)有SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0.故選:D.18.(2023·浙江紹興·統(tǒng)考模擬預(yù)測)設(shè)函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,則(
)A.SKIPIF1<0 B.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱C.SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù) D.SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有兩個極值點【答案】C【分析】根據(jù)周期和對稱性可得SKIPIF1<0,進而根據(jù)正弦函數(shù)性質(zhì)逐項分析判斷.【詳解】由題意可得SKIPIF1<0,且SKIPIF1<0,解得SKIPIF1<0,因為SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,則SKIPIF1<0,整理得SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.對于A:SKIPIF1<0,故A錯誤;對于B:SKIPIF1<0不是最值,故B錯誤;對于C:因為SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上是減函數(shù),所以SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù),故C正確;對D:因為SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0內(nèi)有且僅有一個極值點,所以SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有一個極值點,故D錯誤;故選:C.19.(2023·浙江·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度后得到函數(shù)SKIPIF1<0的圖象,若關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有且僅有兩個不相等的實根,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)三角函數(shù)圖象平移的原則得SKIPIF1<0的表達(dá)式,根據(jù)SKIPIF1<0的范圍得出SKIPIF1<0的范圍,結(jié)合余弦函數(shù)的性質(zhì)列出不等式即可得結(jié)果.【詳解】將函數(shù)SKIPIF1<0向左平移SKIPIF1<0個單位長度后得到函數(shù)SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0在SKIPIF1<0上有且僅有兩個不相等的實根,∴SKIPIF1<0,解得SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0,故選:B.20.(2023·浙江·校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào),則SKIPIF1<0的最大值為(
).A.3 B.5 C.6 D.7【答案】D【分析】根據(jù)SKIPIF1<0可知直線SKIPIF1<0為SKIPIF1<0圖象的對稱軸,根據(jù)SKIPIF1<0可得SKIPIF1<0的對稱中心為SKIPIF1<0,結(jié)合三角函數(shù)的周期性可得SKIPIF1<0,再根據(jù)SKIPIF1<0在SKIPIF1<0上單調(diào),可得SKIPIF1<0,逐一驗證當(dāng)SKIPIF1<0取到最大值11,9,7時,求解SKIPIF1<0,檢驗在SKIPIF1<0上單調(diào)性看是否滿足,即可得答案.【詳解】SKIPIF1<0,∴直線SKIPIF1<0為SKIPIF1<0圖象的對稱軸,SKIPIF1<0,SKIPIF1<0的對稱中心為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0上單調(diào),SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0,因為直線SKIPIF1<0為SKIPIF1<0圖象的對稱軸,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上不單調(diào),舍去;當(dāng)SKIPIF1<0時,SKIPIF1<0,因為直線SKIPIF1<0為SKIPIF1<0圖象的對稱軸,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上不單調(diào),舍去;∴當(dāng)SKIPIF1<0時,SKIPIF1<0,因為直線SKIPIF1<0為SKIPIF1<0圖象的對稱軸,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào).則SKIPIF1<0的最大值為7.故選:D二、多選題21.(2023·浙江溫州·樂清市知臨中學(xué)??寄M預(yù)測)已知函數(shù)SKIPIF1<0,則下列結(jié)論正確的是(
)A.函數(shù)SKIPIF1<0的最小正周期是SKIPIF1<0B.函數(shù)SKIPIF1<0的最大值為1,最小值為SKIPIF1<0C.函數(shù)SKIPIF1<0的圖像在區(qū)間SKIPIF1<0上單調(diào)遞減D.函數(shù)SKIPIF1<0的圖像關(guān)于SKIPIF1<0對稱【答案】AD【分析】首先根據(jù)降冪公式化簡SKIPIF1<0,根據(jù)周期函數(shù)的定義即可判斷A;設(shè)SKIPIF1<0,求出SKIPIF1<0的值域,即可判斷B;由SKIPIF1<0得出SKIPIF1<0,根據(jù)復(fù)合函數(shù)的單調(diào)性,即可判斷C;根據(jù)對稱軸的定義,即可判斷D.【詳解】SKIPIF1<0,對于A:設(shè)SKIPIF1<0的周期為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,其中SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0最小值為SKIPIF1<0,故A正確;對于B:設(shè)SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0的最大值為1,最小值為SKIPIF1<0,故B錯誤;對于C:由B得當(dāng)SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,故C錯誤;對于D:由SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,故D正確,故選:AD.22.(2023·浙江·校聯(lián)考模擬預(yù)測)已知向量SKIPIF1<0,則下列說法正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0為銳角,則SKIPIF1<0C.若SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0,則SKIPIF1<0D.SKIPIF1<0的最小值為1,最大值為3【答案】AC【分析】由向量共線的坐標(biāo)運算即可判斷A,由向量夾角的坐標(biāo)公式即可判斷B,由投影向量即可判斷C,由向量模的坐標(biāo)運算公式即可判斷D.【詳解】若SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故A正確;若SKIPIF1<0為銳角,則SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0不能同向共線,所以SKIPIF1<0,故B錯誤;若SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故C正確;因為SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故D錯誤.故選:AC23.(2023·浙江·校聯(lián)考三模)已知函數(shù)SKIPIF1<0,則下列判斷正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0B.若將SKIPIF1<0的圖象向右平移SKIPIF1<0個單位得到奇函數(shù),則SKIPIF1<0的最小值為SKIPIF1<0C.若SKIPIF1<0在SKIPIF1<0單調(diào)遞減,則SKIPIF1<0D.若SKIPIF1<0在SKIPIF1<0上只有1個零點,則SKIPIF1<0【答案】ABC【分析】由SKIPIF1<0可得SKIPIF1<0關(guān)于SKIPIF1<0對稱,所以SKIPIF1<0,求出SKIPIF1<0可判斷A;由三角函數(shù)的平移變換求出SKIPIF1<0,因為SKIPIF1<0奇函數(shù),所以SKIPIF1<0求出SKIPIF1<0可判斷B;求出SKIPIF1<0的單調(diào)減區(qū)間可判斷C;取SKIPIF1<0,取SKIPIF1<0在SKIPIF1<0的零點可判斷D.【詳解】對于A,由SKIPIF1<0可得SKIPIF1<0關(guān)于SKIPIF1<0對稱,所以SKIPIF1<0,可得:SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0,故A正確;對于B,將SKIPIF1<0的圖象向右平移SKIPIF1<0個單位得到SKIPIF1<0,因為SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0,故B正確;對于C,函數(shù)SKIPIF1<0的單調(diào)減區(qū)間為:SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故C正確;對于D,若SKIPIF1<0在SKIPIF1<0上只有1個零點,則SKIPIF1<0,取SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0無零點,故D不正確.故選:ABC.24.(2023·浙江·校聯(lián)考模擬預(yù)測)已知SKIPIF1<0,則下列命題中成立的是(
).A.若SKIPIF1<0,SKIPIF1<0是第一象限角,則SKIPIF1<0B.若SKIPIF1<0,SKIPIF1<0是第二象限角,則SKIPIF1<0C.若SKIPIF1<0,SKIPIF1<0是第三象限角,則SKIPIF1<0D.若SKIPIF1<0,SKIPIF1<0是第四象限角,則SKIPIF1<0【答案】BD【分析】舉反例判斷A,C;利用終邊相同的角的表示,結(jié)合正余弦函數(shù)以及正切函數(shù)的單調(diào)性可判斷B,D.【詳解】對于A,不妨取SKIPIF1<0,滿足題意,但是SKIPIF1<0,A錯誤;對于B,設(shè)SKIPIF1<0,因為SKIPIF1<0,故SKIPIF1<0,由于SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,B正確;對于C,不妨取SKIPIF1<0,滿足題意,而SKIPIF1<0,C錯誤;對于D,設(shè)SKIPIF1<0,因為SKIPIF1<0,故SKIPIF1<0,由于SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,D正確;故選:BD25.(2023·浙江·校聯(lián)考二模)已知函數(shù)SKIPIF1<0為奇函數(shù),則參數(shù)SKIPIF1<0的可能值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【分析】根據(jù)奇函數(shù)SKIPIF1<0,運用排除法,再驗算即可.【詳解】SKIPIF1<0是奇函數(shù),并在SKIPIF1<0時有意義,SKIPIF1<0,對于A,SKIPIF1<0,又SKIPIF1<0SKIPIF1<0;SKIPIF1<0,是奇函數(shù),正確;對于B,SKIPIF1<0,錯誤;對于C,SKIPIF1<0,又SKIPIF1<0SKIPIF1<0;SKIPIF1<0,是奇函數(shù),正確;對于D,SKIPIF1<0,錯誤;故選:AC.26.(2023·浙江·高三專題練習(xí))已知函數(shù)SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù),則(
)A.SKIPIF1<0與SKIPIF1<0的周期相同B.SKIPIF1<0與SKIPIF1<0的值域相同C.SKIPIF1<0可能是奇函數(shù)D.SKIPIF1<0的最大值是SKIPIF1<0【答案】AC【分析】求導(dǎo)得出SKIPIF1<0,利用三角函數(shù)性質(zhì)直接判斷AB,再利用輔助角公式及正弦函數(shù)性質(zhì)判斷C,結(jié)合二倍角公式判斷D.【詳解】由題意SKIPIF1<0,因此SKIPIF1<0和SKIPIF1<0的最小正周期都是SKIPIF1<0,A正確;SKIPIF1<0值域是SKIPIF1<0,而SKIPIF1<0的值域是SKIPIF1<0,SKIPIF1<0時,兩者不相同,B錯;SKIPIF1<0SKIPIF1<0,(其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為銳角),,當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0是奇函數(shù),C正確;SKIPIF1<0,最大值是SKIPIF1<0,D錯.故選:AC.27.(2023·浙江·高三專題練習(xí))已知函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,且圖象經(jīng)過點SKIPIF1<0,則(
)A.SKIPIF1<0B.點SKIPIF1<0為函數(shù)SKIPIF1<0圖象的對稱中心C.直線SKIPIF1<0為函數(shù)SKIPIF1<0圖象的對稱軸D.函數(shù)SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0【答案】ACD【分析】先求出SKIPIF1<0的解析式,然后逐項分析驗證即可.【詳解】因為最小正周期SKIPIF1<0,所以SKIPIF1<0,所以A對.SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.因為SKIPIF1<0,所以B錯.因為SKIPIF1<0,所以直線SKIPIF1<0為函數(shù)SKIPIF1<0圖象的對稱軸,所以C對.由SKIPIF1<0,得SKIPIF1<0.所以函數(shù)SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,所以D對.故選:ACD28.(2023·浙江·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則(
)A.若SKIPIF1<0的最小正周期為SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0C.若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0D.若SKIPIF1<0的圖象向右平移SKIPIF1<0個單位,得到的函數(shù)為偶函數(shù),則SKIPIF1<0的最小值為SKIPIF1<0【答案】AC【分析】根據(jù)正弦型三角函數(shù)的圖象性質(zhì)逐項判斷即可.【詳解】對于A,若SKIPIF1<0的最小正周期為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故A正確;對于B,若SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0,故B不正確;對于C,當(dāng)SKIPIF1<0,則SKIPIF1<0,由于SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0,故C正確;對于D,SKIPIF1<0的圖象向右平移SKIPIF1<0個單位得SKIPIF1<0,因為其為偶函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0,故D不正確.故選:AC.29.(2023·浙江寧波·鎮(zhèn)海中學(xué)??级#⒑瘮?shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位,得到函數(shù)SKIPIF1<0的圖象,若SKIPIF1<0在SKIPIF1<0上為增函數(shù),則SKIPIF1<0的值可能為(
)A.SKIPIF1<0 B.1 C.2 D.3【答案】ABC【分析】先利用三角函數(shù)平移得到SKIPIF1<0的解析式,再利用正弦函數(shù)的性質(zhì)得到SKIPIF1<0的單調(diào)遞增區(qū)間,結(jié)合題意可得SKIPIF1<0,從而得解.【詳解】依題意,SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上為增函數(shù),所以只考慮SKIPIF1<0的一個單調(diào)遞增區(qū)間SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以選項D不滿足,選項ABC滿足.故選:ABC.30.(2023·浙江·校聯(lián)考模擬預(yù)測)已知向量SKIPIF1<0,函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0在SKIPIF1<0上有4個零點B.SKIPIF1<0在SKIPIF1<0單調(diào)遞增C.SKIPIF1<0D.直線SKIPIF1<0是曲線SKIPIF1<0的一條切線【答案】BCD【分析】根據(jù)向量的數(shù)量積坐標(biāo)公式求解SKIPIF1<0并化簡,對于選項A、B,根據(jù)正弦型函數(shù)的零點,單調(diào)性驗證;對于C,直接代入計算驗證;對于D,利用導(dǎo)數(shù)求SKIPIF1<0在SKIPIF1<0點處的切線進行判斷.【詳解】由題知SKIPIF1<0,對于A,當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上有2個零點,故A錯誤;對于B,當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故B正確;對于C,SKIPIF1<0,故C正確;對于D,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,故在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,故D正確.故選:BCD.三、填空題31.(2023秋·浙江紹興·高三期末)已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】由SKIPIF1<0以及兩角差的正弦公式得SKIPIF1<0,SKIPIF1<0,再根據(jù)兩角和的正弦公式可求出結(jié)果.【詳解】SKIPIF1<0,化簡得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是第一象限角,得SKIPIF1<0,故SKIPIF1<0SKIPIF1<0.答案為:SKIPIF1<0.32.(2023秋·浙江嘉興·高三統(tǒng)考期末)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有3個零點,則實數(shù)SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0【分析】根據(jù)函數(shù)零點的定義,結(jié)合余弦函數(shù)的單調(diào)性利用轉(zhuǎn)化法、數(shù)形結(jié)合思想進行求解即可.【詳解】SKIPIF1<0,由函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有3個零點,可以轉(zhuǎn)化為直線SKIPIF1<0和函數(shù)SKIPIF1<0在SKIPIF1<0上有三個不同的交點,因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞增,函數(shù)值從SKIPIF1<0增加到SKIPIF1<0;當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞減,函數(shù)值從SKIPIF1<0減少到SKIPIF1<0;當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞增,函數(shù)值從SKIPIF1<0增加到SKIPIF1<0,當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0單調(diào)遞減,函數(shù)值從SKIPIF1<0減小到SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上的函數(shù)圖象如下圖所示:因此要想直線SKIPIF1<0和函數(shù)SKIPIF1<0在SKIPIF1<0上有三個不同的交點,只需SKIPIF1<0,故答案為:SK
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版高效設(shè)備采購及標(biāo)準(zhǔn)化安裝合作合同版B版
- 2024投資入股協(xié)議書-體育產(chǎn)業(yè)樣板3篇
- 2025別墅庭院照明系統(tǒng)設(shè)計與安裝服務(wù)合同3篇
- 2024建設(shè)工程園林綠化施工合同
- 2024暑假工兼職人員勞動合同模板及服務(wù)內(nèi)容3篇
- 2024版家禽買賣協(xié)議樣式版A版
- 2024某知名食品企業(yè)產(chǎn)品生產(chǎn)與銷售合同
- 2024某科技公司與人工智能研發(fā)團隊的技術(shù)開發(fā)合同
- 2024年股東權(quán)益保障協(xié)議:共筑美好未來
- KTV經(jīng)營權(quán)轉(zhuǎn)讓合同2024年版版
- 部編人教版六年級下冊小學(xué)語文全冊教案(教學(xué)設(shè)計)(新課標(biāo)核心素養(yǎng)教案)
- 進駐商場計劃書
- 建筑施工材料供應(yīng)鏈管理與控制
- 代理人培養(yǎng)計劃書
- 牛津譯林版八年級上冊英語8A期末復(fù)習(xí)-閱讀理解(含答案)
- 鄉(xiāng)鎮(zhèn)污水處理調(diào)研報告
- 普通高等新郎接親試卷(2022全國卷)
- 第三章天氣與氣候練習(xí)題 人教版七年級上冊地理
- 科研倫理與學(xué)術(shù)規(guī)范-課后作業(yè)答案
- 紀(jì)檢涉案財物管理規(guī)定
- 低溫雨雪冰凍災(zāi)害應(yīng)急救援準(zhǔn)備
評論
0/150
提交評論