2025屆內蒙巴彥淖爾市高考數(shù)學二模試卷含解析_第1頁
2025屆內蒙巴彥淖爾市高考數(shù)學二模試卷含解析_第2頁
2025屆內蒙巴彥淖爾市高考數(shù)學二模試卷含解析_第3頁
2025屆內蒙巴彥淖爾市高考數(shù)學二模試卷含解析_第4頁
2025屆內蒙巴彥淖爾市高考數(shù)學二模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆內蒙巴彥淖爾市高考數(shù)學二模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱錐中,,且分別是棱,的中點,下面四個結論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④2.已知中,,則()A.1 B. C. D.3.為比較甲、乙兩名高二學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為5分,分值高者為優(yōu)),根據測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述正確的是()A.乙的數(shù)據分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據分析最差4.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.15.計算等于()A. B. C. D.6.胡夫金字塔是底面為正方形的錐體,四個側面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.7.函數(shù)在上的大致圖象是()A. B.C. D.8.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.9.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個10.函數(shù)的大致圖象為()A. B.C. D.11.已知集合,則全集則下列結論正確的是()A. B. C. D.12.設α,β為兩個平面,則α∥β的充要條件是A.α內有無數(shù)條直線與β平行B.α內有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面二、填空題:本題共4小題,每小題5分,共20分。13.設平面向量與的夾角為,且,,則的取值范圍為______.14.函數(shù)在上的最小值和最大值分別是_____________.15.展開式中的系數(shù)為________.16.從一箱產品中隨機地抽取一件,設事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產品不是一等品”的概率為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數(shù).以下莖葉圖記錄了他們的考試分數(shù)(以十位數(shù)字為莖,個位數(shù)字為葉):若分數(shù)不低于95分,則稱該員工的成績?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績“優(yōu)秀”的概率;(2)根據這20人的分數(shù)補全下方的頻率分布表和頻率分布直方圖,并根據頻率分布直方圖解決下面的問題.組別分組頻數(shù)頻率1234①估計所有員工的平均分數(shù)(同一組中的數(shù)據用該組區(qū)間的中點值作代表);②若從所有員工中任選3人,記表示抽到的員工成績?yōu)椤皟?yōu)秀”的人數(shù),求的分布列和數(shù)學期望.18.(12分)已知函數(shù).(1)求函數(shù)的單調區(qū)間;(2)若,證明.19.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點在線段上,且平面,,,求二面角的余弦值.20.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.21.(12分)已知函數(shù).(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.22.(10分)已知橢圓的左焦點坐標為,,分別是橢圓的左,右頂點,是橢圓上異于,的一點,且,所在直線斜率之積為.(1)求橢圓的方程;(2)過點作兩條直線,分別交橢圓于,兩點(異于點).當直線,的斜率之和為定值時,直線是否恒過定點?若是,求出定點坐標;若不是,請說明理.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.2、C【解析】

以為基底,將用基底表示,根據向量數(shù)量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.3、C【解析】

根據題目所給圖像,填寫好表格,由表格數(shù)據選出正確選項.【詳解】根據雷達圖得到如下數(shù)據:數(shù)學抽象邏輯推理數(shù)學建模直觀想象數(shù)學運算數(shù)據分析甲454545乙343354由數(shù)據可知選C.【點睛】本題考查統(tǒng)計問題,考查數(shù)據處理能力和應用意識.4、C【解析】

根據雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.5、A【解析】

利用誘導公式、特殊角的三角函數(shù)值,結合對數(shù)運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導公式,考查對數(shù)運算,屬于基礎題.6、D【解析】

設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側棱長為,所以需要燈帶的總長度約為,故選D.7、D【解析】

討論的取值范圍,然后對函數(shù)進行求導,利用導數(shù)的幾何意義即可判斷.【詳解】當時,,則,所以函數(shù)在上單調遞增,令,則,根據三角函數(shù)的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數(shù)在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導數(shù)與函數(shù)單調性的關系以及導數(shù)的幾何意義,屬于中檔題.8、B【解析】

根據角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.9、C【解析】

計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.10、A【解析】

利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.11、D【解析】

化簡集合,根據對數(shù)函數(shù)的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.12、B【解析】

本題考查了空間兩個平面的判定與性質及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質定理即可作出判斷.【詳解】由面面平行的判定定理知:內兩條相交直線都與平行是的充分條件,由面面平行性質定理知,若,則內任意一條直線都與平行,所以內兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據已知條件計算出,結合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計算能力,屬于中等題.14、【解析】

求導,研究函數(shù)單調性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點睛】本題考查了導數(shù)在函數(shù)最值的求解中的應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題15、30【解析】

先將問題轉化為二項式的系數(shù)問題,利用二項展開式的通項公式求出展開式的第項,令的指數(shù)分別等于2,4,求出特定項的系數(shù).【詳解】由題可得:展開式中的系數(shù)等于二項式展開式中的指數(shù)為2和4時的系數(shù)之和,由于二項式的通項公式為,令,得展開式的的系數(shù)為,令,得展開式的的系數(shù)為,所以展開式中的系數(shù),故答案為30.【點睛】本題考查利用二項式展開式的通項公式解決二項展開式的特定項的問題,考查學生的轉化能力,屬于基礎題.16、0.35【解析】

根據對立事件的概率和為1,結合題意,即可求出結果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點睛】本題考查了求互斥事件與對立事件的概率的應用問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①82,②分布列見解析,【解析】

(1)從20人中任取3人共有種結果,恰有1人成績“優(yōu)秀”共有種結果,利用古典概型的概率計算公式計算即可;(2)①平均數(shù)的估計值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項分布,不是超幾何分布,利用二項分布的分布列及期望公式求解即可.【詳解】(1)設從20人中任取3人恰有1人成績“優(yōu)秀”為事件,則,所以,恰有1人“優(yōu)秀”的概率為.(2)組別分組頻數(shù)頻率120.01260.03380.04440.02①,估計所有員工的平均分為82②的可能取值為0、1、2、3,隨機選取1人是“優(yōu)秀”的概率為,∴;;;;∴的分布列為0123∵,∴數(shù)學期望.【點睛】本題考查古典概型的概率計算以及二項分布期望的問題,涉及到頻率分布直方圖、平均數(shù)的估計值等知識,是一道容易題.18、(1)單調遞減區(qū)間為,,無單調遞增區(qū)間(2)證明見解析【解析】

(1)求導,根據導數(shù)的正負判斷單調性,(2)整理,化簡為,令,求的單調性,以及,即證.【詳解】解:(1)函數(shù)定義域為,則,令,,則,當,,單調遞減;當,,單調遞增;故,,,,故函數(shù)的單調遞減區(qū)間為,,無單調遞增區(qū)間.(2)證明,即為,因為,即證,令,則,令,則,當時,,所以在上單調遞減,則,,則在上恒成立,所以在上單調遞減,所以要證原不等式成立,只需證當時,,令,,,可知對于恒成立,即,即,故,即證,故原不等式得證.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性,利用導數(shù)證明不等式,函數(shù)的最值問題,屬于中檔題.19、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)推導出BC⊥CE,從而EC⊥平面ABCD,進而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而BD⊥AC,進而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設AC與BD的交點為G,推導出EC//FG,取BC的中點為O,連結OD,則OD⊥BC,以O為坐標原點,以過點O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因為平面平面,所以平面,所以,因為,所以平面,所以,因為四邊形是平行四邊形,所以四邊形是菱形,故;解法一:(Ⅱ)設與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,取的中點為,連接,則,因為平面平面,所以面,以為坐標原點,以過點且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標系.不妨設,則,,,,,,,設平面的法向量,則,取,同理可得平面的法向量,設平面與平面的夾角為,因為,所以二面角的余弦值為.解法二:(Ⅱ)設與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,,所以平面,所以,取中點,連接、,因為,所以,故平面,所以,即是二面角的平面角,不妨設,因為,,在中,,所以,所以二面角的余弦值為.【點睛】本題考查求空間角中的二面角的余弦值,還考查由空間中線面關系進而證明線線相等,屬于中檔題.20、(1)(2)證明見解析【解析】

(1)將函數(shù)轉化為分段函數(shù)或利用絕對值三角不等式進行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當時,,當,,當時,,所以解法二:(1)如圖當時,解法三:(1)當且僅當即時,等號成立.當時解法一:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,因為成立,所以原不等式成立.解法二:(2)因為,,,所以,,又因為,所以,所以,原不等式得證.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論