湖南省常德市石門一中2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁
湖南省常德市石門一中2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁
湖南省常德市石門一中2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁
湖南省常德市石門一中2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁
湖南省常德市石門一中2025屆高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省常德市石門一中2025屆高三二診模擬考試數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),其中,,其圖象關(guān)于直線對稱,對滿足的,,有,將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,則函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.2.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.3.已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為()A. B. C. D.4.在中,,分別為,的中點,為上的任一點,實數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.5.在中,內(nèi)角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列6.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.7.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個數(shù)為()A.4 B.3 C.2 D.18.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.9.若時,,則的取值范圍為()A. B. C. D.10.為比較甲、乙兩名高二學(xué)生的數(shù)學(xué)素養(yǎng),對課程標準中規(guī)定的數(shù)學(xué)六大素養(yǎng)進行指標測驗(指標值滿分為5分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差11.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.412.設(shè),是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則展開式中的系數(shù)為__14.已知,,,的夾角為30°,,則_________.15.已知向量,,,則_________.16.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若對任意成立,求實數(shù)的取值范圍.18.(12分)設(shè)點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.19.(12分)已知,,分別為內(nèi)角,,的對邊,若同時滿足下列四個條件中的三個:①;②;③;④.(1)滿足有解三角形的序號組合有哪些?(2)在(1)所有組合中任選一組,并求對應(yīng)的面積.(若所選條件出現(xiàn)多種可能,則按計算的第一種可能計分)20.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)已知外接圓半徑,求的周長.21.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)若射線與和分別交于點,求.22.(10分)如圖,在三棱錐中,平面平面,,.點,,分別為線段,,的中點,點是線段的中點.(1)求證:平面.(2)判斷與平面的位置關(guān)系,并證明.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)已知得到函數(shù)兩個對稱軸的距離也即是半周期,由此求得的值,結(jié)合其對稱軸,求得的值,進而求得解析式.根據(jù)圖像變換的知識求得的解析式,再利用三角函數(shù)求單調(diào)區(qū)間的方法,求得的單調(diào)遞減區(qū)間.【詳解】解:已知函數(shù),其中,,其圖像關(guān)于直線對稱,對滿足的,,有,∴.再根據(jù)其圖像關(guān)于直線對稱,可得,.∴,∴.將函數(shù)的圖像向左平移個單位長度得到函數(shù)的圖像.令,求得,則函數(shù)的單調(diào)遞減區(qū)間是,,故選B.【點睛】本小題主要考查三角函數(shù)圖像與性質(zhì)求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調(diào)區(qū)間的求法,屬于中檔題.2、A【解析】

由正弦定理化簡已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.3、B【解析】由題意可得c=,設(shè)右焦點為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點睛:橢圓的定義:到兩定點距離之和為常數(shù)的點的軌跡,當(dāng)和大于兩定點間的距離時,軌跡是橢圓,當(dāng)和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當(dāng)和小于兩定點間的距離時,軌跡不存在.4、D【解析】

根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.5、C【解析】

由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.6、D【解析】

求得定點M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.7、A【解析】

由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項.【點睛】考查集合并集運算,屬于簡單題.8、B【解析】

選B.考點:圓心坐標9、D【解析】

由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.10、C【解析】

根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項.【詳解】根據(jù)雷達圖得到如下數(shù)據(jù):數(shù)學(xué)抽象邏輯推理數(shù)學(xué)建模直觀想象數(shù)學(xué)運算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【點睛】本題考查統(tǒng)計問題,考查數(shù)據(jù)處理能力和應(yīng)用意識.11、D【解析】

模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結(jié)論.【詳解】;如此循環(huán)下去,當(dāng)時,,此時不滿足,循環(huán)結(jié)束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結(jié)論.12、B【解析】

設(shè)過點作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應(yīng)方程,求出離心率.【詳解】解:不妨設(shè)過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識,考查運算求解、推理論證能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1.【解析】

由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計算公式,求出展開式中的系數(shù).【詳解】∵已知,則,

它表示4個因式的乘積.

故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項.

故展開式中的系數(shù).

故答案為:1.【點睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計算公式,屬于中檔題.14、1【解析】

由求出,代入,進行數(shù)量積的運算即得.【詳解】,存在實數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數(shù)量積的運算,屬于基礎(chǔ)題.15、2【解析】

由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點睛】本題主要考查了向量的坐標運算,向量垂直的性質(zhì),向量的模的計算.16、【解析】

由,求出長度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)把代入,利用零點分段討論法求解;(2)對任意成立轉(zhuǎn)化為求的最小值可得.【詳解】解:(1)當(dāng)時,不等式可化為.討論:①當(dāng)時,,所以,所以;②當(dāng)時,,所以,所以;③當(dāng)時,,所以,所以.綜上,當(dāng)時,不等式的解集為.(2)因為,所以.又因為,對任意成立,所以,所以或.故實數(shù)的取值范圍為.【點睛】本題主要考查含有絕對值不等式的解法及恒成立問題,恒成立問題一般是轉(zhuǎn)化為最值問題求解,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運算的核心素養(yǎng).18、(1)(2)見解析【解析】

(1)設(shè),求出后由二次函數(shù)知識得最小值,從而得,即得橢圓方程;(2)設(shè)直線的方程為,代入橢圓方程整理,設(shè),由韋達定理得,設(shè),利用三點共線,求得,然后驗證即可.【詳解】解:(1)設(shè),則,所以,因為.所以當(dāng)時,值最小,所以,解得,(舍負)所以,所以橢圓的方程為,(2)設(shè)直線的方程為,聯(lián)立,得.設(shè),則,設(shè),因為三點共線,又所以,解得.而所以直線軸,即.【點睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設(shè)而不求思想,設(shè),設(shè)直線方程,應(yīng)用韋達定理,得出,再代入題中需要計算可證明的式子參與化簡變形.19、(1)①,③,④或②,③,④;(2).【解析】

(1)由①可求得的值,由②可求出角的值,結(jié)合題意得出,推出矛盾,可得出①②不能同時成為的條件,由此可得出結(jié)論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對應(yīng)的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因為,且,所以,所以,矛盾.所以不能同時滿足①,②.故滿足①,③,④或②,③,④;(2)若滿足①,③,④,因為,所以,即.解得.所以的面積.若滿足②,③,④由正弦定理,即,解得,所以,所以的面積.【點睛】本題考查三角形能否成立的判斷,同時也考查了利用正弦定理和余弦定理解三角形,以及三角形面積的計算,要結(jié)合三角形已知元素類型合理選擇正弦定理或余弦定理解三角形,考查運算求解能力,屬于中等題.20、(1)(2)3+3【解析】

(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長.【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長a+b+c=3+3.【點睛】本題考查三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.21、(1):;:.(2)【解析】

(1)由可得,由,消去參數(shù),可得直線的普通方程為.由可得,將,代入上式,可得,所以曲線的直角坐標方程為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論