版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1
UnderstandingandAddressingtheBarriersforAluminumCompaniestoSetScience-BasedTargets
SummaryofFindingsandRecommendationsJanuary2020
Thisprojectaimedtoestablishafoundationforthedevelopmentoftoolsandguidancetoenable
aluminumcompaniestosetscience-basedtargets(SBTs).Inthisproject,WRIengagedaluminumsector
expertstoidentifychallengestosettingSBTsusingexistingmethodsandrecommendoptionsfor
pursuingrevisedmethods,aswellasnewguidanceandotherresources.
2
TableofContents
UnderstandingandAddressingtheBarriersforAluminumCompaniestoSetScience-BasedTargets 1
TableofContents 2
Context 3
ProjectScope 3
ProjectActivities 4
ExistingSBTOptionsfortheAluminumSector 5
Scope3Emissions 6
TheSectoralDecarbonizationApproach(SDA) 7
LimitationsofthecurrentSDAforthealuminumsector 8
Ahomogenoussector? 8
Theweightofelectricity 9
Cradletogate 9
KeyChallengesIdentifiedfortheAluminumSector’sAdoptionofSBTs 10
Emissions-intensivegrowth 10
Recyclinguncertainty 10
IEAmodellingoutputsversusreportedindustrydata 11
Regionaldifferences 12
Processemissions 12
Organizationalboundaries 12
2020editionofIEA’sEnergyTechnologiesPerspectives(ETP)publication 13
KeyRecommendationsandPriorities 13
RevisethecurrentSDAtoincludemissingscope1and2emissions 14
UtilizealternativeSDAsectorapproaches 15
DevelopstrategicSBT‘roadmaps’ 16
CreatemultipliersanddiscountfactorstotheSDA 16
SummaryandPrioritizationofRecommendations 17
AppendixA:KeyThemesfromSanAntonioWorkshop 19
AppendixB:GreenhouseGasWorkingGroupIn-PersonMeetingMinutes 22
3
Context
InDecember2015,nearly200countriesadoptedtheParisAgreement,thefirst-everuniversalclimateagreementthatseeksto“strengthentheglobalresponsetothethreatofclimatechangebykeepingaglobaltemperaturerisethiscenturywellbelow2°Celsiusabovepre-industriallevelsandtopursue
effortstolimitthetemperatureincreaseevenfurtherto1.5°Celsius.”In2018,theIntergovernmentalPanelonClimateChange(IPCC)releasedthespecialreportGlobalWarmingof1.5°C(SR1.5),which
providesstrongevidencethatlimitingwarmingbelow1.5°Cwillsignificantlylowerclimateimpactsandhumanitariancriseslinkedtodrought,sealevelrise,flooding,extremeheat,andecosystemcollapse.Tolimitwarmingto1.5°C,theIPCCassertsthatglobalgreenhousegas(GHG)emissionsmustbecutby45%from2010levelsby2030andreachnet-zeroemissionsaround2050(IPCC2018).
Tosupportcorporateeffortstomovetomoresustainablegrowthpatternsandtostaywithinthe
scientifictemperatureguardrailssetbytheIPCC,theScienceBasedTargetsinitiative(SBTi)was
launchedinJune2015.TheSBTidefinesandpromotesbestpracticeinSBTsetting,offersresourcesandguidancetoreducebarrierstoadoption,andindependentlyassessesandapprovescompanies’targets.Forexample,ithascreatedtheSectoralDecarbonizationApproach(SDA),amethodfordevelopingSBTsinthealuminumandotherGHG-intensiveindustries.TheSBTi’soverallaimisthatbytheendof2020,settingSBTswillbestandardbusinesspracticeandcorporationswillplayamajorroleindrivingdownglobalGHGemissions.
AccordingtotheInternationalAluminiumInstitute(IAI),thealuminumsectorcontributesmorethan1gigatonneofcarbondioxideequivalent(GtCO2e)toannualglobalGHGemissions,roughly2%oftotalanthropogenicemissionsglobally.TheInternationalEnergyAgency(IEA)ranksthealuminumsubsectorasthefourth-largestindustrialenergyconsumerandCO2emitter,representing4%(6.2exajoules)of
finalindustrialenergydemandand3%oftotaldirectCO2emissionsfromindustrialsourcesin20141(261millionmetrictonnesofcarbondioxideequivalent,orMtCO2e/year).
Aluminumproductionisparticularlyassociatedwithhighelectricitydemand,whichisresponsibleforapproximately70%oftotalGHGemissionsfromthesector.Infact,thesectoraccountsfor4.7%ofglobalelectricityconsumption(IEA2017)whiletotalenergyuse,onaverage,accountsformorethan40%ofaluminumproductioncosts.2TheGHGpredominantlyemittedintheproductionofprimaryaluminumisCO2,althoughotherGHGswithhighglobalwarmingpotentials(GWP)arealsoemitted.
ProjectScope
Althoughthealuminumindustryisalargeproducerandend-userofenergy,thematerialpropertiesofaluminum—lightweight,durableandhighlyrecyclable—meanthealuminumindustryhasanimportantroletoplayinthetransitiontoalow-carboneconomy.However,ofthe789companiesthathaveeitherapprovedSBTsorhavecommittedtosetSBTs(asofJanuary2020),onlythreearepartofthealuminumindustry:BallCorporation(adownstreamconsumerofrolledproducts),EN+Group(anenergyproducer
1EnergyTechnologyPerspectives2017,IEA
2IPCCAR5TWG3
4
withpredominantlyhydro-poweredprimaryaluminumassetsinitsportfolio),andHulamin(aproducerofrolledproducts).3
Torespondtothisreality,thisprojectwasconceivedtoidentifyexistingandperceivedbarriersforthealuminumsector,leadingtogreaterunderstandingofoptionsforsettingSBTsbyaluminumcompanies.Thekeyexpectedoutcomesfortheprojectinclude:
1.Greaterawarenessofthepracticalchallengesfacedbytheglobalaluminumindustryin
limitingGHGemissionsfromthesector;
2.GreaterunderstandingofthefeasibilityofsectoralSBTpathwaysthatinclude(anddon’t
include)theemissionsreductionpotentialfromalongthevaluechain;
3.Recommendedoptionsforfactoringthesechallengesintorevisedmethodsornewtoolsand
guidanceforsettingSBTsintheindustry.
ProjectActivities
Tobuildsupportfortheproject’sfindingsandbuildmomentumforthedevelopmentoffuturetools,
WRIengagednumerousindustrystakeholdersdrawnfromcompanies,industryassociations,NGOs,
researchorganizations,andinter-governmentalorganizations(includingtheIEA).4WRIcollaborated
closelywiththeIAIinparticular,asoneoftheorganization’scoreactivitiesistocollect,analyze,
disseminateandmaintainthebestavailabledatafortheglobalaluminumsector.Infact,theIEAuses
theIAI’sdatatomodelandproducethealuminumsectoroutputsforitsEnergyTechnologyPerspectives(ETP)publication(animportantdetailtonoteforthepurposesandoutcomesofthisproject).
WRIheldthreestakeholderengagementeventsduringthisproject.ThefirstwasakickoffwebinarheldonJanuary9,2019tointroducetheproject.Aninitiallistof288potentialstakeholderswasidentifiedandprovidedbyIAI,andthekickoffwebinarrecorded228registeredparticipants.Followingthe
webinarWRIconvenedathree-hour,in-personworkshoponMarch13,2019inSanAntonio,Texas.
Overtenrepresentativesfromthealuminumsectorattendedandprovidedcriticalinputontheproject.AppendixAsummarizeskeythemesfromtheworkshopdiscussion,whichwereguidedbythefollowingobjectives:
1.Alignonaluminumsector-specificinputsandassumptionsforrefreshingthesectoral
decarbonization(SDA)pathway;
2.ShareopportunitiesandchallengesforsettingSBTsandreducingemissions;
3.Discusswhattools,guidanceandsupportaluminumcompaniesneedtosetSBTs.
WRIconvenedathirdstakeholdereventonSeptember27,2019inCambridge,UKincollaborationwiththeAluminiumStewardshipInitiative’s(ASI)annualStandardsCommitteemeeting.Nearlytwodozenparticipantsattendedtheworkshop,whereWRIsharedpreliminaryresearchresultsincludingarevisedwell-below2°C(WB2C)5climatestabilizationpathwayforthealuminumsector.Participantsatboth
3
/companies-taking-action/
4AddAppendixwithStakeholderlist
5Although“well-below2?C”isnotstrictlydefinedintheParisAgreement,itiscommonlyunderstoodtobeanalogoustotheIPCC’s‘likelychance’terminology,whichisequivalenttoa66%probabilityofkeeping
temperaturerisebelowacertainlimit(inthiscase2?C).
5
workshopsprovidedusefulinputthatultimatelyhelpedinformthisdocument.Ingeneral,themeetingcoveredbrainstorminganddiscussionofSBToptions,aswellastargetedQ&AfromWRItohelpexpandonpreviouslydiscussedideasandtosolicitfeedbackonnewideas.MinutesfromthemeetingwithASIareprovidedinAppendixB.
ExistingSBTOptionsfortheAluminumSector
AsdefinedintheGHGProtocolCorporateAccountingandReportingStandard,scope1emissionsaredirectemissionsfromownedorcontrolledsources,whereasscope2emissionsareindirectemissionsfromthegenerationofpurchasedenergy(WRIandWBCSD2004).
ThecurrentSBTicriteriaandrecommendations(Version4.0,publishedinApril2019)requirescorporatescope1and2targetstobeconsistentwithatleastaWB2Cpathway,withgreatereffortsencouragedtowardlimitingwarmingto1.5°C.Companiesfromthealuminumsectorcurrentlyhavethreemethodsforsettingscope1and2targetswithintheSBTi:
.Absolutecontraction:Reduceabsoluteemissionsbyaminimumof2.5%annuallytokeepglobaltemperatureincreasewithinwell-below2°C,orbyaminimumof4.2%annuallyfora1.5°C
globaltemperaturelimit;
.Activity-basedintensity:Reduceemissionsintensityperphysicalproductionoutputwithaunitthat’srepresentativeofacompany’sportfolio(e.g.,peraluminumcanshipped),which,whentranslatedtoabsoluteemissionsreductionterms,isinlinewiththeminimumabsolute
contractionapproach;
.Sector-based:Theglobalcarbonbudgetisdividedbysectorandemissionreductionsare
allocatedtoindividualcompaniesbasedonthesector’sbudget.Tofacilitatethisapproach,theSBTidevelopedtheSectoralDecarbonizationApproach(SDA).
Forscope3targets,therearefourmethodsavailableforcompanies.6
.Absolutecontraction:Reduceabsoluteemissionsbyaminimumof2.5%annuallytokeepglobaltemperatureincreasewithinwell-below2°C,orbyaminimumof4.2%annuallyfora1.5°C
globaltemperaturelimit;
.Economicintensity:Reduceemissionsintensitypervalueaddedbyatleastanaverageof7%yearonyear;
.Physicalintensity:IntensityreductionsalignedwiththealuminumsectorSDA;ortargetsthatdonotresultinabsoluteemissionsgrowthandleadtolinearannualintensityimprovements
equivalentto2%,ataminimum;
.Supplierengagement:Committohavingaspecificpercentageofsuppliers(asapercentageofspendorGHGemissions)withtheirownSBTswithinfiveyearsfromthedatethecompany’stargetissubmittedtotheSBTiforvalidation.
62°Cistheminimumlevelofambitionforscope3targets;however,companiesareencouragedtopursuegreaterefforttowardawell-below2°C(minimum2.5%annuallinearreduction)ora1.5°Ctrajectory(minimum4.2%
annuallinearreduction).
6
Scope3Emissions
Valuechain(scope3)emissionscanbesignificantforbothupstreamanddownstreamaluminum
companies.For“pureplay”aluminumproducers,forexample,downstreamscope3emissionsfrom
Category10–ProcessingofSoldProducts7(e.g.transformationofonetonneofaluminuminto
componentsfortheaviationsector)areoftenasignificantsourceofemissions.Forallfabricatorsof
aluminumend-useproducts,theupstreamscope3emissionsfromCategory1–PurchasedGoodsandServices8(transformationofminedbauxiteintoonetonneofaluminum)areoftentimesmoresignificantthanthecombinedscope1and2emissionsfromtheirownoperations.Figure1describesthe15scope3categoriesasdefinedbytheGHGProtocolCorporateValueChain(Scope3)AccountingandReporting
Standard.
Figure1:GHGProtocolScope3EmissionsCategories
Whilecompaniesofallstripesfacenumerousbarrierstoaccountingforandaddressingscope3
emissions(e.g.collectingdatafromsuppliers),theseemissionsalsopresentcompanieswithpotentialmitigationopportunitieswhensettingSBTs(e.g.increasedpurchasingfromcarbon-friendlysuppliers).
Forallcompanies,thecurrentSBTicriteriaandrecommendations(Version4.0,publishedinApril2019)requirethesubmissionofascope3targetwhenacompany’srelevantscope3emissionsare40%or
moreoftotalscope1,2and3emissions.Oncethis40%thresholdhasbeenreached,companiesmustsetoneormoreemissionreductiontargetsand/orsupplierorcustomerengagementtargetsthat
collectivelycoveratleasttwo-thirdsoftotalscope3emissionsinconformancewiththeGHGProtocolScope3Standard.
7
/standards/scope-3-standard
8Ibid
7
TheSectoralDecarbonizationApproach(SDA)
TheSDAisascientifically-informedmethodforcompaniestosetGHGreductiontargets.The
methodologyisintendedtohelpcompaniesinhomogenous,energy-intensivesectorswithwell-definedactivityandphysicalintensitydatatoaligntheiremissionsreductiontargetswithaglobalWB2C
pathway.9
ThecurrentSDAmethodprovidesthebasisfortheonlyexisting,sector-specificmethodforsettingSBTsinthealuminumsector.TheSDA’sWB2Cscenarioisbasedonamodeled“Beyond2°C”(B2DS)scenariofromthe2017ETP,10wheretechnologyimprovementsanddeploymentarepushedtotheirmaximumpracticablelimitsacrosstheenergysysteminordertoachievenet-zeroemissionsby2060andtostaynetzeroorbelowthereafter,withoutrequiringunforeseentechnologybreakthroughsorlimiting
economicgrowth.This“technologypush”approachresultsincumulativeemissionsfromtheenergysectorofaround750GtCO2between2015and2100,whichisconsistentwitha50%chanceoflimitingaveragefuturetemperatureincreasesto1.75°C.1112Thealuminumsector’scumulativecarbonbudgetoverthissametimeframehasbeenestimatedtobeapproximately11GtCO2(scope1only),orroughly1%oftheglobalcarbonbudget.
TheIEA’sB2DSscenariolaysoutanenergysystempathwayandaCO2emissionstrajectoryconsistentwithatleasta66%probabilityofkeepingtemperaturerisebelow2?Cby2100.Underthispathway,theenergyintensityofaluminumproduction(assuminga2010gridmix)mustfallby7%between2010and2025,13andsteeperreductionsarerequiredoverthelongterm.Ultimately,thepathwayimpliesthe
needforlargereductionsinemissionsintensitybetween2010and2050,specifically:direct(scope1)emissionsintensitymustfall88%,whilescope2emissionsintensitymustfall96%.14
Figure2showsthesector’sSDApathwayoutputs(2014–2060)forprimaryaluminum(secondaryexcluded)basedonIEA’sB2DCscenarioandindexedtoproduction.
9TheSBTicurrentlyisintheearlyphasesofdevelopinga1.5°CalignedpathwayforincorporationintotheSDA.10
/reports/energy-technology-perspectives-2017
11Incontrast,theIEA’s20172°Cscenarioestimatesanoverallcarbonbudgetof1,170GtCO2from2015-2100.12
/wp-content/uploads/2019/04/foundations-of-SBT-setting.pdf
13
/etp/etp2016/
14
/wp-content/uploads/2015/05/Sectoral-Decarbonization-Approach-Report.pdf
8
Figure2:IndexedSDApathwayoutputsforprimaryaluminum(2014-2060)
Indexedsector-specificdata(2014baseyear)
Sectoraldata(ETP2017|B2DS)
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
activitypowerconsumptionscopeemissionsintensityscopeemissionsintensity
Sector
Sector
Sector2
Sector
1
20142024203420442054
TheSDAmethodtakessectoraldifferencesandabatementpotentialsintoaccount,whichare
consideredinthemakingofthedifferentsectorscope1scenarios.TheSDAmodelalsoincludesscope2scenariosbasedonasharedpowergenerationpathwayforeachscenariooutcome(e.g.1.5?C).Thesescenarioscanalsobeusedtosetvalidscope3targets,totheextentthatcertainactivitypathways
correspondtoscope3categoriesortheemissionssourcesofacompany’sscope3inventory.For
example,wherecertainscope3categoriesconsistmainlyofpurchasedelectricityemissions,the
relevantSDApowergenerationpathwaycanbeusedtomodelreductiontargets.Forhomogeneous
sectors,theSDAmethodalsoaccommodatesdifferentiatedlevelsofhistoricalaction,asitrequiresGHGemissions-intensivecompaniestoreducetheiremissionsfasterthanthesectoralaverage;conversely,companieswithrelativelylowinitialemissionsintensitiesmayreducetheiremissionsmoreslowly.15
LimitationsofthecurrentSDAforthealuminumsector
CompaniesfromthealuminumsectorhaveexpressedincreasinginterestinusingtheSDAoranothersector-specificintensity-basedapproachtosetSBTsanddemonstratetheircommitmenttotransitiontoalow-carbonfuture.However,companieshavealsoidentifiedandexpressedconcernsaboutthemodelingassumptionsusedtoproducetheSDA’sbenchmarkpathway.
Ahomogenoussector?
Ingeneral,aphysicalindicatorthatrepresentsasector’sprimaryoutput(e.g.onetonneofaluminum)isahelpfulwaytocomparetheemissionsintensityofsimilarcompanieswithinthesamehomogenoussector,andthustheindividuallevelofeffortneededtoconvergetoanoptimallevelofemissionsperunit
ofproduct.Toproduceausefulmetric,however,theunderlyingdatausedtomeasureacompany’semissionsimpactideallyshouldbealignedwiththedatausedtomodelthesector’semissionsimpact(e.g.totalconsumptionofelectricity).
Onecleartakeawayfromstakeholdersinvolvedduringthisprojectisthatwhilstthesectorisgenerallydefinedashomogenous,manycompaniesinthealuminumindustryproduceawidearrayofproductsthatoftentimescannotbecapturedinasinglephysicalindicator.Similarly—butnotuniquetothe
15
/wp-content/uploads/2019/04/foundations-of-SBT-setting.pdf
9
aluminumsectorperse—theorganizationalboundariesthatdefineacompany’sGHGemissionsprofilecanoftendiffer,furthercomplicatingperceptionsofanunlevelplayingfieldbysome.Althoughthisis
notthecaseforeverystakeholder,thediversitythatexistsacrossthealuminumsector’svaluechainhasnonethelesspresentedcomplicationsforbothupstreamanddownstreamactorsinterestedinusingtheSDAtohelpdefinetheirSBT.
Theweightofelectricity
Electricityisasignificantinputtothealuminumproductionprocess,andvariationsintheelectricitymixofglobalaluminumproducersistheprimary(butnotonly)distinctionamongtheGHGemissions
intensity(tCO2e/tAl)ofanaluminumproducer’sfinalsoldproducts.Accordingtoa2011studybytheCarbonTrustthismetriccanvaryconsiderably,fromaslittleas1tCO2e/tAlofrecycledaluminum,to3tCO2e/tAlforbestavailabletechnology(BAT)smelterspoweredbyrenewableelectricity,andupto20tCO2e/tAlforlessmoderntechnologypoweredbycoal-basedelectricity.16
Furthermore,duetothealuminumsector’sconsiderableutilizationofcaptiveordirectlydelivered
powersupplies,thesourceofelectricityactuallyused(andthecorrespondingemissionfactors)can
significantlydifferfromthenationalorregionalgridmixesusedintheIEA’sETPmodelling.17And
becausemanyproducersofaluminumgeneratetheirownelectricity,theprofileoftheirscope1and2emissionsmaydifferconsiderablyfromthoseoftheirpeers,potentiallylimitingtheusefulnessofthealuminumpathwayresultsfromtheSDAmodel.
Cradletogate
Theupstreamsegmentofthealuminummarketconsistsoftheproductionofprimaryaluminum(and
alloys),includingtheentirerawmaterialsupplychainandprocessesthatprecedeitsproduction.The
downstreamsectorismadeupofthousandsofproducersofsemi-finishedandfinishedaluminum
products,aswellasproducersofrecycledaluminumfromprocessedmaterial.Ofconcernformany
downstreamaluminumstakeholdersistheSDA’scoverageofsectoremissionsandactivities,whichis
currentlylimitedtothe“cradle-to-gate”upstreamenergyemissionsfromtransformingbauxiteinto
alumina,anodeproduction,aluminumsmelting(electrolysis)andingotcasting.ThecurrentIEAmodelincludesbothproductionofprimaryaluminumfromaluminaandsecondaryaluminumproduction(fromrecycledmaterials)andofaluminumalloys.Admittedlytheseactivitiesrepresentthelion’sshareof
emissionsfromthesector,buttheabsenceofarelevantpathwayforthedownstreamsegment—beyondtheirupstreamscope3emissions—ostensiblyclosesthedoorforasignificantnumberofpotentialSBTsettersfromtheindustry.18
Onarelatednote,thescope2emissionspathwayresultsfordifferentactorsalongthevaluechainisnotaccountedforinthecurrentSDA.Forexample,thescope2emissionsofadownstreamfabricatorof
aluminumproductsarelikelytobevastlydifferentthanthoseofapure-playproducerofaluminum,and
16
/media/38366/ctc790-international-carbon-flows_-aluminium.pdf
17
/media/filer_public/2018/02/19/lca_report_2015_final_26_june_2017.pdf
18Onaverage72%ofGHGemissionsfromprimaryproductionofaluminumarefromelectricitywiththeremainderfromthermalcombustionoffossilfuelsandprocessemissions.
/media/38366/ctc790
-international-carbon-flows_-aluminium.pdf
10
thustheSDA’sassumptionofintensityconvergencewouldbeparticularlyinappropriateforthefabricator.
KeyChallengesIdentifiedfortheAluminumSector’sAdoptionofSBTs
Basedondiscussionswithstakeholdersduringthewebinars,workshopsandindividualconversations,therearearangeofchallengesastowhythealuminumsectorhasbeenslowtocommittosettingSBTs.Someofthesechallengesarenotuniquetothealuminumsectoranditscompanies(e.g.organic
growth),butseveralchallengesdodemonstrateaneedtomovebeyondaone-size-fits-allapproachfor
thesector.
Mirroringtheoperationaldiversitythatcharacterizesthealuminumindustry,thereisawiderangeofperceivedobstaclesforparticipationamongindividualstakeholders,including:
Emissions-intensivegrowth
Ledbytheeconomicgrowthofemergingeconomies,thesectorestimatesthatby2030itwillproduce90milliontonnesofprimaryaluminum(MTAl),comparedto60MTAltoday.19Givenabusiness-as-
usualscenariobasedoncurrentmacroeconomictrends,thesectorprojectstheproductionofthe
additional30MTAltobesuppliedmostlybyChinaandSouthEastAsia(bothpoweredmostlybycoal-basedelectricity)andtheMiddleEast(poweredbynaturalgas),withtheresultthatfossilfuelscouldpoweranevenhigherpercentageofglobalsmelterproduction(currentlyabout60%).20Intheabsenceofsupportforlow-carbonaluminumfromthepublicandprivatesectors,thisrealityisaparticularly
vexingproblemwithrespecttothesector’scontributiontoclimatechange.
Recyclinguncertainty
Greaterrecyclingbytheindustrytoproducemoresecondaryaluminumisoftencitedasoneofthe
primarywaystoreduceGHGemissionsfromthealuminumsector.Indeedthisistrue,butsectorexperts(e.g.IAI,etal)haveindicatedthereislimitedavailabilityofend-of-lifescrapmetalforcollection(a
functionoflongproductlifetimes,growingdemand,andashiftfromcasttowroughtapplications,
particularlyintheautomotivesector)andincreasingcompetitionforhighquality,well-sortedand
valuablenewscrap(again,particularlyfromtheautosector).21Figure3illustratestheannualdemandamongdifferentsectorsforsemi-fabricatedaluminumproducts(e.g.extrudedaluminum).In2018,forexample,54%oftotaldemandforaluminumwasdominatedbytwosectorsthatproduceproductswithlonglifetimes:Transport(28.4MtAl)andBuilding&Construction(24.8MtAl).
19InternationalAluminumInstitute,
/
20InternationalAluminumInstitute,
/
21EnergyTechnologyPerspectives2017,IEA
11
Figure3:Sectordemandforsemi-fabricatedproducts
180
160
Milliontonnes
140
120
100
80
60
40
20
0
Other
ConsumerDurables
Machinery&EquipmentElectrical
Packaging
Building&ConstructionTransport
200020052010201520202025203020352040Source:IAI
IEAmodellingoutputsversusreportedindustrydata
TheIEA’sETPscenariosareproducedusingmodelsthataccountforindustrialenergyconsumption
separatelyfromtheproductionofelectricity.However,becausealuminumsmeltersareoftenco-locatedwithaluminumindustry-operatedpowergenerationfacilities,electricityproductionandconsumption
areintertwinedforasubstantialportionofthesector.Despiteaconsiderableamountofdesktop
researchandcollaborationwithindustryexperts(mostnotablyIAI),thediscrepancybetweentheIEA’selectricityconsumptionfiguresforthesectorandthoseoftheIAI’sremainsunclear.Predictably,the
correspondingdifferencesinscope2emissionsestimatesfromIEAandIAIforelectricityusebythe
sectorareconsiderable(35%).Table1showsthediscrepanciesinscope1emissionsestimatesbetweentheIEAandtheIAI(47%)andthetotalpercentagedifferenceforallGHGemissions(39%).Ofequal
concernisthedifferencebetweenIEA’stotalreportedproductionofprimaryandsecondaryaluminum(126MTAlin2014)versusthoseoftheIAI(80MTin2014).ThedifferencebetweenthesenumbersisnotfullyaccountedforbytheIEA,sowingconfusionabouttheresultsofitsanalysisforthesectoranditsappropriatenessformodellingcorporatetargetsusingtheSDA.
12
Table1:ModellingImplicationsofDifferingDataEstimates
SOURCE
SCOPE1EMISSIONS
(2018)
SCOPE2EMISSIONS
(2018)
TOTAL2018EMISSIONS(SCOPE1AND2)
IEAETP2017
273MTCO2e
500MTCO2e
773MTCO2e
IAI2018
401MTCO2e
676MTCO2e
1,077MTCO2e
Differencebetweenestimations(%)
47%
35%
39%
Regionaldifferences
ThecurrentversionoftheSDAmethodintrinsicallyaccountsforregionaldifferencesregardinglevelofactivityandcarbonintensity,butnotexplicitlyinrelationtoregionalresources.Strongregional
variationsexistforthepowersectorglobally,however,under
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物理c語言課程設(shè)計
- 混凝土課程設(shè)計模板
- 2024湖南省建筑安全員B證(項目經(jīng)理)考試題庫
- 2024青海省安全員-B證考試題庫及答案
- 綜合時間序列課程設(shè)計
- 簡單cpu課程設(shè)計
- 2024年跨境電商平臺入駐銷售合同范本(中英文對照)3篇
- 電機課程設(shè)計總結(jié)
- 2025河南省建筑安全員《B證》考試題庫及答案
- 甲醇合成精餾課程設(shè)計
- 電工技術(shù)(第3版)表格式教案教學(xué)詳案設(shè)計
- 湖北省八校聯(lián)合體2025屆高二生物第一學(xué)期期末檢測試題含解析
- 度三年級語文上冊期末試卷(圖片版含答案)
- 2024年青島市技師學(xué)院招考聘用48人高頻500題難、易錯點模擬試題附帶答案詳解
- 2024年中國輔酶Q10膠囊行業(yè)投資分析、市場運行態(tài)勢、未來前景預(yù)測報告
- 玉溪大紅山鐵礦二期北采區(qū)采礦施工組織設(shè)計
- 2024年《多媒體技術(shù)與應(yīng)用》 考試題庫及答案
- 2024年外研版九年級英語上冊知識點總結(jié)
- 必刷題2024六年級英語上冊語法規(guī)則專項專題訓(xùn)練(含答案)
- 2024新教科版四年級上冊科學(xué)知識點總結(jié)精簡版
- 《朝花夕拾》閱讀推進課 教學(xué)設(shè)計-2023-2024學(xué)年統(tǒng)編版語文七年級下冊
評論
0/150
提交評論