版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省恩施州2025屆高考數(shù)學(xué)五模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知一個三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.2.國務(wù)院發(fā)布《關(guān)于進一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費使用效益的意見》中提出,要優(yōu)先落實教育投入.某研究機構(gòu)統(tǒng)計了年至年國家財政性教育經(jīng)費投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經(jīng)費的支出持續(xù)增長B.年以來,國家財政性教育經(jīng)費的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經(jīng)費的支出增長最多的年份是年3.已知函數(shù),則()A. B.1 C.-1 D.04.已知函數(shù).設(shè),若對任意不相等的正數(shù),,恒有,則實數(shù)a的取值范圍是()A. B.C. D.5.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.6.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.7.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣128.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件9.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.10.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.11.二項式的展開式中只有第六項的二項式系數(shù)最大,則展開式中的常數(shù)項是()A.180 B.90 C.45 D.36012.若,則的虛部是A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.14.已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點,則雙曲線的標準方程為______.15.已知數(shù)列滿足,且,則______.16.若實數(shù)x,y滿足約束條件,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,設(shè)橢圓:,長軸的右端點與拋物線:的焦點重合,且橢圓的離心率是.(Ⅰ)求橢圓的標準方程;(Ⅱ)過作直線交拋物線于,兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.18.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點.已知長為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長為,求的表達式;(2)要使改建成的展示區(qū)的面積最大,求的值.19.(12分)在中,角A,B,C的對邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,,且,求BD的長度.20.(12分)已知點,若點滿足.(Ⅰ)求點的軌跡方程;(Ⅱ)過點的直線與(Ⅰ)中曲線相交于兩點,為坐標原點,求△面積的最大值及此時直線的方程.21.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個極值點,,證明:.22.(10分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長方體,于是得到三棱錐的外接球即為長方體的外接球,進而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個頂點位于長方體的四個頂點,即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當(dāng)且僅當(dāng),時,三棱錐外接球的表面積取得最小值為.故選B.【點睛】(1)解決關(guān)于外接球的問題的關(guān)鍵是抓住外接的特點,即球心到多面體的頂點的距離都等于球的半徑,同時要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時可考慮通過構(gòu)造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.2、C【解析】
觀察圖表,判斷四個選項是否正確.【詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【點睛】本題考查統(tǒng)計圖表,正確認識圖表是解題基礎(chǔ).3、A【解析】
由函數(shù),求得,進而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、D【解析】
求解的導(dǎo)函數(shù),研究其單調(diào)性,對任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域為,,當(dāng)時,,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調(diào)遞減,即,從而,因為,所以實數(shù)a的取值范圍是故選:D.【點睛】此題考查含參函數(shù)研究單調(diào)性問題,根據(jù)參數(shù)范圍化簡后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問題,屬于一般性題目.5、D【解析】
根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因為復(fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.【點睛】本題主要考查復(fù)數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎(chǔ)題.6、C【解析】
直接利用復(fù)數(shù)的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復(fù)數(shù)的除法的運算法則的應(yīng)用,考查計算能力.7、D【解析】
分別聯(lián)立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因為直線經(jīng)過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎(chǔ)題。8、B【解析】
根據(jù)誘導(dǎo)公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運用,屬于基礎(chǔ)題.9、B【解析】
求導(dǎo)函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導(dǎo)數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關(guān)結(jié)合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應(yīng)用導(dǎo)數(shù)研究函數(shù)圖象的走向,利用數(shù)形結(jié)合思想,轉(zhuǎn)化為函數(shù)圖象間交點個數(shù)的問題,難度不大.10、B【解析】
由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎(chǔ)題.11、A【解析】試題分析:因為的展開式中只有第六項的二項式系數(shù)最大,所以,,令,則,.考點:1.二項式定理;2.組合數(shù)的計算.12、B【解析】
因為,所以的虛部是.故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫圖直觀圖可得該幾何體為棱錐,再計算高求解體積即可.【詳解】解:如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點睛】本題主要考查了四棱錐中的長度計算以及垂直的判定和體積計算等,需要根據(jù)題意14、【解析】
設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點,能求出雙曲線方程.【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過拋物線焦點,∴,∴雙曲線方程為,故答案為:.【點睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質(zhì)的合理運用,屬于中檔題.15、【解析】
數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【點睛】本題考查了等比數(shù)列定義,考查了對數(shù)的運算性質(zhì),考查了等比數(shù)列的通項公式,是中檔題.16、3【解析】
作出可行域,可得當(dāng)直線經(jīng)過點時,取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點,當(dāng)直線經(jīng)過點時,.故答案為:3.【點睛】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】
(Ⅰ)由已知求出拋物線的焦點坐標即得橢圓中的,再由離心率可求得,從而得值,得標準方程;(Ⅱ)設(shè)直線方程為,設(shè),把直線方程代入拋物線方程,化為的一元二次方程,由韋達定理得,由弦長公式得,同理求得點的橫坐標,于是可得,將面積表示為參數(shù)的函數(shù),利用導(dǎo)數(shù)可求得最大值.【詳解】(Ⅰ)∵橢圓:,長軸的右端點與拋物線:的焦點重合,∴,又∵橢圓的離心率是,∴,,∴橢圓的標準方程為.(Ⅱ)過點的直線的方程設(shè)為,設(shè),,聯(lián)立得,∴,,∴.過且與直線垂直的直線設(shè)為,聯(lián)立得,∴,故,∴,面積.令,則,,令,則,即時,面積最小,即當(dāng)時,面積的最小值為9,此時直線的方程為.【點睛】本題考查橢圓方程的求解,拋物線中弦長的求解,涉及三角形面積范圍問題,利用導(dǎo)數(shù)求函數(shù)的最值問題,屬綜合困難題.18、(1),.(2)【解析】
(1)由余弦定理的,然后根據(jù)直線與圓相切的性質(zhì)求出,從而求出;(2)求得的表達式,通過求導(dǎo)研究函數(shù)的單調(diào)性求得最大值.【詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因為與半圓相切于,所以,所以,所以.所以四邊形的周長為,.(2)設(shè)四邊形的面積為,則,.所以,.令,得列表:+0-增最大值減答:要使改建成的展示區(qū)的面積最大,的值為.【點睛】本題考查余弦定理、直線與圓的位置關(guān)系、導(dǎo)數(shù)與函數(shù)最值的關(guān)系,考查考生的邏輯思維能力,運算求解能力,以及函數(shù)與方程的思想.19、(1)(2)【解析】
(1)根據(jù)共線得到,利用正弦定理化簡得到答案.(2)根據(jù)余弦定理得到,,再利用余弦定理計算得到答案.【詳解】(1)∵與共線,∴.即,∴即,∵,∴,∵,∴.(2),,,在中,由余弦定理得:,∴.則或(舍去).∴,∵∴.在中,由余弦定理得:,∴.【點睛】本題考查了向量共線,正弦定理,余弦定理,意在考查學(xué)生的綜合應(yīng)用能力.20、(Ⅰ);(Ⅱ)面積的最大值為,此時直線的方程為.【解析】
(1)根據(jù)橢圓的定義求解軌跡方程;(2)設(shè)出直線方程后,采用(表示原點到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:(Ⅰ)由定義法可得,點的軌跡為橢圓且,.因此橢圓的方程為.(Ⅱ)設(shè)直線的方程為與橢圓交于點,,聯(lián)立直線與橢圓的方程消去可得,即,.面積可表示為令,則,上式可化為,當(dāng)且僅當(dāng),即時等號成立,因此面積的最大值為,此時直線的方程為.【點睛】常見的利用定義法求解曲線的軌跡方程問題:(1)已知點,若點滿足且,則的軌跡是橢圓;(2)已知點,若點滿足且,則的軌跡是雙曲線.21、(1)見解析;(2)見解析【解析】
(1)求得的導(dǎo)函數(shù),對分成兩種情況,討論的單調(diào)性.(2)由(1)判斷出的取值范圍,根據(jù)韋達定理求得的關(guān)系式,利用差比較法,計算,通過構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得,進而證得不等式成立.【詳解】(1).當(dāng)時,,此時在上單調(diào)遞減;當(dāng)時,由解得或,∵是增函數(shù),∴此時在和單調(diào)遞減,在單調(diào)遞增.(2)由(1)知.,,,不妨設(shè),∴,,令,∴,∴在上是減函數(shù),,∴,即.【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.22、(1)(2)證明見解析【解析】
(1)將函數(shù)轉(zhuǎn)化為分段函數(shù)或利用絕對值三角不等式進行求解;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度集合大合集人員管理篇
- 單位管理制度匯編大合集人力資源管理
- 《家具導(dǎo)購圣經(jīng)》課件
- 單位管理制度分享匯編職員管理篇十篇
- 單位管理制度分享大全職工管理十篇
- 2024教科室工作計劃
- 單位管理制度呈現(xiàn)合集職工管理篇十篇
- 《投資管理復(fù)習(xí)》課件
- 《市場考察報告》課件
- 《廣告效果的測定》課件
- 美的供應(yīng)鏈變革及智慧采購解決方案
- 高低壓電力系統(tǒng)預(yù)試驗及維保服務(wù)方案
- 教師教育技能培訓(xùn)(3篇模板)
- 代發(fā)工資委托書格式樣本
- YBT 6246-2024《核電工程用熱軋帶肋鋼筋》
- 管桁架焊接 (1)講解
- 大學(xué)助農(nóng)直播創(chuàng)業(yè)計劃書
- 心理健康教育國內(nèi)外研究現(xiàn)狀
- 燃氣經(jīng)營安全重大隱患判定標準課件
- 《經(jīng)濟學(xué)原理》題庫(含參考答案)
- 廣州社會保險退款申請表
評論
0/150
提交評論