版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省泰安市泰安第四中學(xué)2025屆高考數(shù)學(xué)押題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直角梯形中,,,,,點(diǎn)為上一點(diǎn),且,當(dāng)?shù)闹底畲髸r(shí),()A. B.2 C. D.2.對(duì)于函數(shù),若滿足,則稱為函數(shù)的一對(duì)“線性對(duì)稱點(diǎn)”.若實(shí)數(shù)與和與為函數(shù)的兩對(duì)“線性對(duì)稱點(diǎn)”,則的最大值為()A. B. C. D.3.德國(guó)數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個(gè)關(guān)于π的級(jí)數(shù)展開式,該公式于明朝初年傳入我國(guó).在我國(guó)科技水平業(yè)已落后的情況下,我國(guó)數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國(guó)的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時(shí)近30年,證明了包括這個(gè)公式在內(nèi)的三個(gè)公式,同時(shí)求得了展開三角函數(shù)和反三角函數(shù)的6個(gè)新級(jí)數(shù)公式,著有《割圓密率捷法》一書,為我國(guó)用級(jí)數(shù)計(jì)算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級(jí)數(shù)展開式”計(jì)算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.4.雙曲線:(,)的一個(gè)焦點(diǎn)為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.5.函數(shù)(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,6.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于軸對(duì)稱,則的最小值是()A. B. C. D.7.過直線上一點(diǎn)作圓的兩條切線,,,為切點(diǎn),當(dāng)直線,關(guān)于直線對(duì)稱時(shí),()A. B. C. D.8.盒中有6個(gè)小球,其中4個(gè)白球,2個(gè)黑球,從中任取個(gè)球,在取出的球中,黑球放回,白球則涂黑后放回,此時(shí)盒中黑球的個(gè)數(shù),則()A., B.,C., D.,9.在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是()A. B. C. D.10.已知向量,且,則m=()A.?8 B.?6C.6 D.811.已知直線:()與拋物線:交于(坐標(biāo)原點(diǎn)),兩點(diǎn),直線:與拋物線交于,兩點(diǎn).若,則實(shí)數(shù)的值為()A. B. C. D.12.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布,從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機(jī)變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)恒成立,則實(shí)數(shù)的取值范圍是_____.14.已知函數(shù),若方程的解為,(),則_______;_______.15.如圖是一個(gè)算法流程圖,若輸出的實(shí)數(shù)的值為,則輸入的實(shí)數(shù)的值為______________.16.已知集合,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,點(diǎn)為半圓上一動(dòng)點(diǎn),若過作橢圓的兩切線分別交軸于、兩點(diǎn).(1)求證:;(2)當(dāng)時(shí),求的取值范圍.18.(12分)如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面,,分別是的中點(diǎn).(1)證明:平面平面;(2)已知點(diǎn)在棱上且,求直線與平面所成角的余弦值.19.(12分)已知函數(shù),.(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當(dāng)時(shí),的最大值為,求證:.20.(12分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.22.(10分)選修4-5:不等式選講已知函數(shù).(1)設(shè),求不等式的解集;(2)已知,且的最小值等于,求實(shí)數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進(jìn)而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點(diǎn)在線段上,設(shè),則,即,又因?yàn)樗裕?,?dāng)時(shí),等號(hào)成立.所以.故選:B.【點(diǎn)睛】本題考查平面向量線性運(yùn)算中的加法運(yùn)算、向量共線定理,以及運(yùn)用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.2、D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對(duì)稱點(diǎn)”,所以,故(當(dāng)且僅當(dāng)時(shí)取等號(hào)).又與為函數(shù)的“線性對(duì)稱點(diǎn),所以,所以,從而的最大值為.故選:D.【點(diǎn)睛】本題以新定義為背景,考查指數(shù)函數(shù)的運(yùn)算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.3、B【解析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計(jì)算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時(shí)滿足判定條件,輸出結(jié)果,故選:B.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,得到程序框圖的計(jì)算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.4、A【解析】
根據(jù)題意得到,化簡(jiǎn)得到,得到答案.【詳解】根據(jù)題意知:焦點(diǎn)到漸近線的距離為,故,故漸近線為.故選:.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.5、D【解析】
由題意結(jié)合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過點(diǎn),求出,即可求得答案【詳解】由函數(shù)圖象可知:,函數(shù)的圖象過點(diǎn),,則故選【點(diǎn)睛】本題主要考查的是的圖像的運(yùn)用,在解答此類題目時(shí)一定要挖掘圖像中的條件,計(jì)算三角函數(shù)的周期、最值,代入已知點(diǎn)坐標(biāo)求出結(jié)果6、A【解析】
化簡(jiǎn)為,求出它的圖象向左平移個(gè)單位長(zhǎng)度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對(duì)稱列方程即可求得,問題得解。【詳解】函數(shù)可化為:,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對(duì)稱,所以,解得:,即:,又,所以.故選:A.【點(diǎn)睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識(shí),考查轉(zhuǎn)化能力,屬于中檔題。7、C【解析】
判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對(duì)稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設(shè)圓的圓心為,半徑為,點(diǎn)不在直線上,要滿足直線,關(guān)于直線對(duì)稱,則必垂直于直線,∴,設(shè),則,,∴,.故選:C.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,考查直線的對(duì)稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對(duì)稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.8、C【解析】
根據(jù)古典概型概率計(jì)算公式,計(jì)算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項(xiàng).【詳解】表示取出的為一個(gè)白球,所以.表示取出一個(gè)黑球,,所以.表示取出兩個(gè)球,其中一黑一白,,表示取出兩個(gè)球?yàn)楹谇颍?,表示取出兩個(gè)球?yàn)榘浊?,,所?所以,.故選:C【點(diǎn)睛】本小題主要考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望的計(jì)算,屬于中檔題.9、D【解析】
根據(jù)空間向量的線性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.10、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.11、D【解析】
設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達(dá)定理,再由直線與拋物線的交點(diǎn)求出點(diǎn)坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點(diǎn)睛】本題考查直線與拋物線的綜合應(yīng)用,弦長(zhǎng)公式的應(yīng)用,屬于中檔題.12、B【解析】試題分析:由題意故選B.考點(diǎn):正態(tài)分布二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
若函數(shù)恒成立,即,求導(dǎo)得,在三種情況下,分別討論函數(shù)單調(diào)性,求出每種情況時(shí)的,解關(guān)于的不等式,再取并集,即得?!驹斀狻坑深}意得,只要即可,,當(dāng)時(shí),令解得,令,解得,單調(diào)遞減,令,解得,單調(diào)遞增,故在時(shí),有最小值,,若恒成立,則,解得;當(dāng)時(shí),恒成立;當(dāng)時(shí),,單調(diào)遞增,,不合題意,舍去.綜上,實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查恒成立條件下,求參數(shù)的取值范圍,是??碱}型。14、【解析】
求出在上的對(duì)稱軸,依據(jù)對(duì)稱性可得的值;由可得,依據(jù)可求出的值.【詳解】解:令,解得因?yàn)?,所以關(guān)于對(duì)稱.則.由,則由可知,,又因?yàn)?,所以,則,即故答案為:;.【點(diǎn)睛】本題考查了三角函數(shù)的對(duì)稱軸,考查了誘導(dǎo)公式,考查了同角三角函數(shù)的基本關(guān)系.本題的易錯(cuò)點(diǎn)在于沒有正確判斷的取值范圍,導(dǎo)致求出.在求的對(duì)稱軸時(shí),常用整體代入法,即令進(jìn)行求解.15、【解析】
根據(jù)程序框圖得到程序功能,結(jié)合分段函數(shù)進(jìn)行計(jì)算即可.【詳解】解:程序的功能是計(jì)算,若輸出的實(shí)數(shù)的值為,則當(dāng)時(shí),由得,當(dāng)時(shí),由,此時(shí)無解.故答案為:.【點(diǎn)睛】本題主要考查程序框圖的識(shí)別和判斷,理解程序功能是解決本題的關(guān)鍵,屬于基礎(chǔ)題.16、【解析】
根據(jù)并集的定義計(jì)算即可.【詳解】由集合的并集,知.故答案為:【點(diǎn)睛】本題考查集合的并集運(yùn)算,屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時(shí),求出兩切線的方程,驗(yàn)證結(jié)論成立;②兩切線、的斜率都存在,可設(shè)切線的方程為,將該直線的方程與橢圓的方程聯(lián)立,由可得出關(guān)于的二次方程,利用韋達(dá)定理得出兩切線的斜率之積為,進(jìn)而可得出結(jié)論;(2)求出點(diǎn)、的坐標(biāo),利用兩點(diǎn)間的距離公式結(jié)合韋達(dá)定理得出,換元,可得出,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【詳解】(1)由于點(diǎn)在半圓上,則.①當(dāng)兩切線、中有一條切線斜率不存在時(shí),可求得兩切線方程為,或,,此時(shí);②當(dāng)兩切線、的斜率都存在時(shí),設(shè)切線的方程為(、的斜率分別為、),,,,.綜上所述,;(2)根據(jù)題意得、,,令,則,所以,當(dāng)時(shí),,當(dāng)時(shí),.因此,的取值范圍是.【點(diǎn)睛】本題考查橢圓兩切線垂直的證明,同時(shí)也考查了弦長(zhǎng)的取值范圍的計(jì)算,考查計(jì)算能力,屬于中等題.18、(1)證明見解析;(2).【解析】
(1)由平面幾何知識(shí)可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標(biāo)系,可求得面PAB的法向量,再運(yùn)用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點(diǎn),,故面,又且,故四邊形是平行四邊形,面,又,是面內(nèi)的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設(shè)是平面PAB的法向量,,令,則,,直線NE與平面所成角的余弦值為.【點(diǎn)睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.19、(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點(diǎn)斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當(dāng)時(shí),在上單調(diào)遞增.則函數(shù)在上的最小值是(2)當(dāng)時(shí),令,即,令,即(i)當(dāng),即時(shí),在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時(shí),由的單調(diào)性可得在上的最小值是(iii)當(dāng),即時(shí),在上單調(diào)遞減,在上的最小值是(Ⅲ)當(dāng)時(shí),令,則是單調(diào)遞減函數(shù).因?yàn)?,,所以在上存在,使得,即討論可得在上單調(diào)遞增,在上單調(diào)遞減.所以當(dāng)時(shí),取得最大值是因?yàn)?,所以由此可證試題解析:(Ⅰ)因?yàn)楹瘮?shù),且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因?yàn)楹瘮?shù),所以(1)當(dāng)時(shí),,所以在上單調(diào)遞增.所以函數(shù)在上的最小值是(2)當(dāng)時(shí),令,即,所以令,即,所以(i)當(dāng),即時(shí),在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時(shí),在上單調(diào)遞減,在上單調(diào)遞增,所以在上的最小值是(iii)當(dāng),即時(shí),在上單調(diào)遞減,所以在上的最小值是綜上所述,當(dāng)時(shí),在上的最小值是當(dāng)時(shí),在上的最小值是當(dāng)時(shí),在上的最小值是(Ⅲ)因?yàn)楹瘮?shù),所以所以當(dāng)時(shí),令,所以是單調(diào)遞減函數(shù).因?yàn)?,,所以在上存在,使得,即所以?dāng)時(shí),;當(dāng)時(shí),即當(dāng)時(shí),;當(dāng)時(shí),所以在上單調(diào)遞增,在上單調(diào)遞減.所以當(dāng)時(shí),取得最大值是因?yàn)椋砸驗(yàn)?,所以所?0、(1)證明見解析;(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列,并求得其通項(xiàng)公式.然后利用累加法求得數(shù)列的通項(xiàng)公式.(2)利用錯(cuò)位相減求和法求得數(shù)列的前項(xiàng)和【詳解】(1)已知,則,且,則為以3為首相,3為公比的等比數(shù)列,所以,.(2)由(1)得:,,①,②①-②可得,則即.【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查累加法求數(shù)列的通項(xiàng)公式,考查錯(cuò)位相減求和法,屬于中檔題.21、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點(diǎn)列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對(duì)于任意實(shí)數(shù)都成立,所以.此時(shí),則.由,解得.當(dāng)x變化時(shí),與的變化情況如下表
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度二手住宅交易墊資服務(wù)協(xié)議
- 2024年度銀行信用貸款擔(dān)保合同范本3篇
- 2024年度金融信托合同樣本:實(shí)現(xiàn)財(cái)富傳承與投資增值3篇
- 2024年企業(yè)員工離職補(bǔ)償勞動(dòng)合同范本3篇
- 2024年度高校與企業(yè)產(chǎn)學(xué)研合作人才培養(yǎng)與創(chuàng)新創(chuàng)業(yè)指導(dǎo)及市場(chǎng)開拓專用協(xié)議3篇
- 2024年度高新技術(shù)企業(yè)員工勞動(dòng)合同范本及知識(shí)產(chǎn)權(quán)保護(hù)協(xié)議3篇
- 2024年度電子元器件貼牌代生產(chǎn)合同3篇
- 2024年商業(yè)綜合體后勤服務(wù)保障委托合同3篇
- 2024年新能源汽車生產(chǎn)與銷售戰(zhàn)略合作協(xié)議
- 2024年度虛擬股權(quán)投資合作協(xié)議范本(含收益權(quán)轉(zhuǎn)讓)3篇
- 八年級(jí)初二(上)綜合實(shí)踐教案
- 凍土地區(qū)路基病害與防治措施
- 車輛保養(yǎng)維修登記表
- 國(guó)家開放大學(xué)《理工英語3》章節(jié)測(cè)試參考答案
- 濕法脫硫用水水質(zhì)要求
- 信息化系統(tǒng)機(jī)房標(biāo)識(shí)的相關(guān)規(guī)范
- 城管局個(gè)人工作總結(jié)
- MT_T 1186-2020 露天煤礦運(yùn)輸安全技術(shù)規(guī)范_(高清版)
- 冷庫項(xiàng)目專項(xiàng)扶持資金申請(qǐng)報(bào)告(模板范本)
- 鉑銠合金漏板.
- 國(guó)有建設(shè)企業(yè)《大宗材料及設(shè)備采購招標(biāo)管理辦法》
評(píng)論
0/150
提交評(píng)論