江西工業(yè)職業(yè)技術(shù)學(xué)院《數(shù)據(jù)預(yù)處理技術(shù)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
江西工業(yè)職業(yè)技術(shù)學(xué)院《數(shù)據(jù)預(yù)處理技術(shù)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
江西工業(yè)職業(yè)技術(shù)學(xué)院《數(shù)據(jù)預(yù)處理技術(shù)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
江西工業(yè)職業(yè)技術(shù)學(xué)院《數(shù)據(jù)預(yù)處理技術(shù)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
江西工業(yè)職業(yè)技術(shù)學(xué)院《數(shù)據(jù)預(yù)處理技術(shù)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁江西工業(yè)職業(yè)技術(shù)學(xué)院

《數(shù)據(jù)預(yù)處理技術(shù)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的決策樹算法具有易于理解和解釋的特點(diǎn)。假設(shè)我們構(gòu)建了一個(gè)決策樹來預(yù)測客戶是否會(huì)購買某產(chǎn)品,以下哪個(gè)因素可能影響決策樹的復(fù)雜度和準(zhǔn)確性?()A.特征選擇B.分裂準(zhǔn)則C.剪枝策略D.以上都是2、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),數(shù)據(jù)標(biāo)準(zhǔn)化或歸一化是常見的操作。假設(shè)要對(duì)一組包含不同量綱的特征數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化,以下哪種方法可能是最常用的?()A.最小-最大標(biāo)準(zhǔn)化B.Z-score標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上方法使用頻率相同3、假設(shè)要分析不同年齡段消費(fèi)者對(duì)某產(chǎn)品的滿意度,以下關(guān)于數(shù)據(jù)分組和分析的描述,正確的是:()A.分組越細(xì),對(duì)消費(fèi)者滿意度的分析就越準(zhǔn)確B.不考慮樣本量的大小,隨意劃分年齡段進(jìn)行分組C.對(duì)于每個(gè)年齡段,只計(jì)算滿意度的平均值就足夠了D.分析不同年齡段滿意度的差異時(shí),需要進(jìn)行假設(shè)檢驗(yàn)4、在進(jìn)行數(shù)據(jù)可視化時(shí),顏色的選擇和使用可以影響可視化的效果。假設(shè)我們要在一個(gè)圖表中區(qū)分不同的類別,以下哪個(gè)關(guān)于顏色選擇的原則是重要的?()A.對(duì)比度高B.符合文化和認(rèn)知習(xí)慣C.考慮色盲人群的可辨識(shí)度D.以上都是5、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏模式和知識(shí)方面發(fā)揮著重要作用。假設(shè)要從大量銷售數(shù)據(jù)中挖掘潛在的客戶購買模式,以下關(guān)于數(shù)據(jù)挖掘技術(shù)選擇的描述,正確的是:()A.僅使用關(guān)聯(lián)規(guī)則挖掘,不考慮其他技術(shù)B.盲目應(yīng)用所有的數(shù)據(jù)挖掘算法,不考慮數(shù)據(jù)特點(diǎn)和業(yè)務(wù)需求C.結(jié)合聚類分析、分類算法和關(guān)聯(lián)規(guī)則挖掘等技術(shù),根據(jù)數(shù)據(jù)特點(diǎn)和問題需求選擇合適的方法D.認(rèn)為數(shù)據(jù)挖掘結(jié)果一定準(zhǔn)確,無需進(jìn)一步驗(yàn)證和解釋6、在進(jìn)行數(shù)據(jù)分析時(shí),數(shù)據(jù)的可視化呈現(xiàn)方式會(huì)影響對(duì)數(shù)據(jù)的理解和解讀。假設(shè)我們要展示不同年齡段人群的收入分布情況。以下關(guān)于數(shù)據(jù)可視化呈現(xiàn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以使用小提琴圖同時(shí)展示數(shù)據(jù)的分布和密度B.雷達(dá)圖適合比較多個(gè)變量在不同類別上的表現(xiàn)C.3D圖表能夠更生動(dòng)地展示數(shù)據(jù),應(yīng)盡量使用3D圖表D.選擇合適的數(shù)據(jù)可視化呈現(xiàn)方式要考慮數(shù)據(jù)的特點(diǎn)和分析目的7、在數(shù)據(jù)分析中,數(shù)據(jù)分析報(bào)告是一種重要的成果輸出形式。以下關(guān)于數(shù)據(jù)分析報(bào)告的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)分析報(bào)告應(yīng)該包括問題的背景、分析的方法、結(jié)果的呈現(xiàn)和結(jié)論的建議等內(nèi)容B.數(shù)據(jù)分析報(bào)告應(yīng)該使用簡潔明了的語言,避免使用專業(yè)術(shù)語和復(fù)雜的公式C.數(shù)據(jù)分析報(bào)告應(yīng)該具有邏輯性和條理性,便于讀者理解和接受D.數(shù)據(jù)分析報(bào)告的結(jié)果可以根據(jù)需要進(jìn)行調(diào)整和修改,以滿足不同的需求8、對(duì)于一個(gè)包含多個(gè)數(shù)值型變量的數(shù)據(jù)集,若要判斷數(shù)據(jù)是否符合正態(tài)分布,應(yīng)采用哪種檢驗(yàn)方法?()A.t檢驗(yàn)B.卡方檢驗(yàn)C.正態(tài)性檢驗(yàn)D.F檢驗(yàn)9、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫是存儲(chǔ)和管理數(shù)據(jù)的重要工具。以下關(guān)于數(shù)據(jù)倉庫的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉庫可以整合來自不同數(shù)據(jù)源的數(shù)據(jù),為數(shù)據(jù)分析提供統(tǒng)一的數(shù)據(jù)視圖B.數(shù)據(jù)倉庫中的數(shù)據(jù)通常是經(jīng)過清洗和轉(zhuǎn)換的,具有較高的數(shù)據(jù)質(zhì)量C.數(shù)據(jù)倉庫的建設(shè)需要投入大量的時(shí)間和資源,且維護(hù)成本較高D.數(shù)據(jù)倉庫只適用于大型企業(yè),對(duì)于中小企業(yè)來說沒有必要建設(shè)10、在建立分類模型時(shí),如果數(shù)據(jù)存在類別不平衡問題,以下哪種技術(shù)可以用于數(shù)據(jù)增強(qiáng)?()A.生成對(duì)抗網(wǎng)絡(luò)B.自編碼器C.變分自編碼器D.以上都不是11、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問題。以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不正確的?()A.可以通過刪除包含大量缺失值的記錄來簡化數(shù)據(jù),但可能會(huì)丟失有價(jià)值的信息B.對(duì)于錯(cuò)誤的數(shù)據(jù),可以根據(jù)數(shù)據(jù)的分布和邏輯關(guān)系進(jìn)行修正或刪除C.重復(fù)記錄的處理只需保留其中一條,對(duì)分析結(jié)果沒有實(shí)質(zhì)性影響D.數(shù)據(jù)清洗的目的是提高數(shù)據(jù)質(zhì)量,為后續(xù)的分析提供可靠的數(shù)據(jù)基礎(chǔ)12、在數(shù)據(jù)分析的假設(shè)檢驗(yàn)中,假設(shè)要檢驗(yàn)一種新的營銷策略是否顯著提高了產(chǎn)品的銷售額。收集了實(shí)施前后的銷售數(shù)據(jù),以下哪種假設(shè)檢驗(yàn)方法可能是合適的選擇?()A.t檢驗(yàn),比較兩組均值B.方差分析,比較多組均值C.卡方檢驗(yàn),檢驗(yàn)分類變量的關(guān)系D.不進(jìn)行假設(shè)檢驗(yàn),主觀判斷營銷策略的效果13、當(dāng)分析一個(gè)物流企業(yè)的配送數(shù)據(jù),包括貨物類型、配送地點(diǎn)、運(yùn)輸時(shí)間等,以優(yōu)化配送路線和提高配送效率??紤]到實(shí)際的交通狀況和限制條件,以下哪種優(yōu)化方法可能是適用的?()A.線性規(guī)劃B.模擬退火算法C.遺傳算法D.以上都是14、數(shù)據(jù)分析中,數(shù)據(jù)安全策略的制定應(yīng)考慮多方面因素。以下關(guān)于數(shù)據(jù)安全策略制定的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)安全策略的制定應(yīng)包括數(shù)據(jù)的加密、備份、訪問控制和審計(jì)等方面B.數(shù)據(jù)安全策略的制定應(yīng)根據(jù)數(shù)據(jù)的重要性和敏感性來確定不同的安全級(jí)別C.數(shù)據(jù)安全策略的制定應(yīng)定期進(jìn)行評(píng)估和調(diào)整,以適應(yīng)不斷變化的安全環(huán)境D.數(shù)據(jù)安全策略的制定只需要考慮企業(yè)內(nèi)部的安全需求,不需要考慮外部的安全威脅15、數(shù)據(jù)分析中的數(shù)據(jù)標(biāo)注對(duì)于監(jiān)督學(xué)習(xí)算法至關(guān)重要。假設(shè)要對(duì)圖像數(shù)據(jù)進(jìn)行分類標(biāo)注,以下關(guān)于數(shù)據(jù)標(biāo)注方法的描述,正確的是:()A.讓非專業(yè)人員進(jìn)行標(biāo)注,不進(jìn)行質(zhì)量控制B.不制定標(biāo)注規(guī)范和標(biāo)準(zhǔn),導(dǎo)致標(biāo)注結(jié)果不一致C.組織專業(yè)的標(biāo)注團(tuán)隊(duì),制定明確的標(biāo)注規(guī)范和流程,進(jìn)行質(zhì)量檢查和審核,確保標(biāo)注數(shù)據(jù)的準(zhǔn)確性和一致性D.認(rèn)為數(shù)據(jù)標(biāo)注是簡單的任務(wù),不需要投入太多資源和時(shí)間16、對(duì)于一個(gè)包含大量文本數(shù)據(jù)的數(shù)據(jù)集,若要進(jìn)行情感分析,以下哪種技術(shù)可能會(huì)被用到?()A.自然語言處理B.圖像識(shí)別C.語音識(shí)別D.機(jī)器學(xué)習(xí)17、假設(shè)要對(duì)大量數(shù)據(jù)進(jìn)行快速排序,以下哪種算法在平均情況下性能較好?()A.冒泡排序B.插入排序C.快速排序D.選擇排序18、假設(shè)要對(duì)海量圖像數(shù)據(jù)進(jìn)行分析,以下關(guān)于圖像數(shù)據(jù)分析方法的描述,正確的是:()A.直接使用傳統(tǒng)的數(shù)據(jù)分析方法處理圖像數(shù)據(jù),效果良好B.基于深度學(xué)習(xí)的圖像識(shí)別算法能夠自動(dòng)提取圖像的特征C.圖像數(shù)據(jù)的分辨率對(duì)分析結(jié)果沒有影響D.不需要對(duì)圖像數(shù)據(jù)進(jìn)行預(yù)處理,直接輸入模型進(jìn)行分析19、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理包括數(shù)據(jù)標(biāo)準(zhǔn)化、歸一化等操作。假設(shè)要對(duì)不同量級(jí)的數(shù)據(jù)進(jìn)行處理,以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.標(biāo)準(zhǔn)化可以將數(shù)據(jù)轉(zhuǎn)換為均值為0,標(biāo)準(zhǔn)差為1的分布,使得不同特征具有可比性B.歸一化可以將數(shù)據(jù)映射到特定的區(qū)間,如[0,1],但可能會(huì)改變數(shù)據(jù)的分布C.數(shù)據(jù)預(yù)處理對(duì)后續(xù)的分析和建模影響不大,可以根據(jù)個(gè)人喜好選擇是否進(jìn)行D.對(duì)于數(shù)值型數(shù)據(jù)和分類型數(shù)據(jù),需要采用不同的數(shù)據(jù)預(yù)處理方法20、對(duì)于一個(gè)高維度的數(shù)據(jù)集,若要快速找到與給定數(shù)據(jù)點(diǎn)最相似的k個(gè)數(shù)據(jù)點(diǎn),以下哪種算法效率較高?()A.K-Means算法B.KNN算法C.DBSCAN算法D.層次聚類算法21、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時(shí)保留數(shù)據(jù)的主要特征?()A.主成分分析B.因子分析C.線性判別分析D.以上都是22、在數(shù)據(jù)分析中,因果推斷用于確定變量之間的因果關(guān)系。假設(shè)要研究廣告投入與銷售額之間的因果關(guān)系,以下關(guān)于因果推斷的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)對(duì)照實(shí)驗(yàn)是確定因果關(guān)系的黃金標(biāo)準(zhǔn),但在實(shí)際中可能難以實(shí)施B.觀察性研究可以通過控制混雜因素來推斷因果關(guān)系,但存在一定的局限性C.相關(guān)性強(qiáng)就意味著存在因果關(guān)系,可以直接根據(jù)相關(guān)性得出因果結(jié)論D.可以使用工具變量、雙重差分等方法來解決因果推斷中的內(nèi)生性問題23、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫是一種重要的存儲(chǔ)和管理數(shù)據(jù)的方式。以下關(guān)于數(shù)據(jù)倉庫的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)倉庫可以將來自不同數(shù)據(jù)源的數(shù)據(jù)整合在一起B(yǎng).數(shù)據(jù)倉庫可以提供高效的數(shù)據(jù)查詢和分析功能C.數(shù)據(jù)倉庫中的數(shù)據(jù)是實(shí)時(shí)更新的,反映了最新的業(yè)務(wù)狀態(tài)D.數(shù)據(jù)倉庫的建設(shè)需要投入大量的時(shí)間和資源24、在數(shù)據(jù)分析中,評(píng)估模型的性能是關(guān)鍵步驟。假設(shè)建立了一個(gè)預(yù)測客戶流失的模型,需要評(píng)估模型在不同閾值下的準(zhǔn)確性、召回率和F1值等指標(biāo)。以下哪種評(píng)估方法在這種客戶關(guān)系管理場景中能夠更全面地評(píng)估模型的性能?()A.交叉驗(yàn)證B.留出法C.自助法D.以上方法效果相同25、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),特征工程是重要的環(huán)節(jié)。以下關(guān)于特征工程的描述,錯(cuò)誤的是:()A.特征縮放可以加快模型的訓(xùn)練速度B.特征選擇可以去除無關(guān)或冗余的特征C.特征構(gòu)建是從原始數(shù)據(jù)中創(chuàng)造新的特征D.特征工程對(duì)模型的性能沒有影響二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡述數(shù)據(jù)分析師如何應(yīng)對(duì)數(shù)據(jù)質(zhì)量問題,包括數(shù)據(jù)缺失、錯(cuò)誤、不一致等,并介紹一些數(shù)據(jù)清洗和修復(fù)的方法。2、(本題5分)解釋數(shù)據(jù)倉庫中的索引優(yōu)化策略,說明如何選擇合適的索引來提高數(shù)據(jù)查詢性能,并舉例說明。3、(本題5分)關(guān)聯(lián)規(guī)則挖掘常用于發(fā)現(xiàn)數(shù)據(jù)中的潛在關(guān)聯(lián),闡述Apriori算法的基本思想和步驟,并舉例說明其在商業(yè)領(lǐng)域的應(yīng)用。4、(本題5分)在數(shù)據(jù)分析中,如何處理時(shí)間序列中的趨勢(shì)和季節(jié)性成分?請(qǐng)介紹分解時(shí)間序列的方法和步驟,并舉例說明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某電商平臺(tái)記錄了用戶的搜索關(guān)鍵詞、瀏覽商品類別、購買決策時(shí)間等。探討怎樣利用這些數(shù)據(jù)優(yōu)化搜索引擎和購物流程。2、(本題5分)某超市的日用品類目記錄了銷售數(shù)據(jù),包括品牌、商品種類、價(jià)格、促銷方式、銷售數(shù)量等。分析不同品牌和種類日用品在促銷方式下的銷售數(shù)量變化。3、(本題5分)一家童裝店擁有銷售數(shù)據(jù)、兒童身高體重分布、款式流行趨勢(shì)等。采購適合不同年齡段兒童的時(shí)尚童裝。4、(本題5分)一家珠寶品牌的定制首飾業(yè)務(wù)收集了數(shù)據(jù),包括客戶需求、設(shè)計(jì)方案、制作成本、銷售價(jià)格等。研究客戶需求與設(shè)計(jì)方案和制作成本的關(guān)聯(lián)。5、(本題5分)某在線陶藝課程平臺(tái)積累了學(xué)員報(bào)名數(shù)據(jù)、作品展示反饋、課程滿意度等。完善陶藝課程體系和教學(xué)服務(wù)。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)隨著在線教育的發(fā)展,學(xué)生的學(xué)習(xí)行為數(shù)據(jù)和課程評(píng)價(jià)數(shù)據(jù)大量產(chǎn)生。論述如何通過數(shù)據(jù)分析技術(shù),如學(xué)習(xí)進(jìn)度跟蹤、教學(xué)效果評(píng)估等,改進(jìn)在線教育課程設(shè)計(jì),提升教學(xué)質(zhì)量,同時(shí)思考在數(shù)據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論