版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河南省洛陽市重點(diǎn)中學(xué)2025屆高三下學(xué)期第六次檢測數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.記等差數(shù)列的公差為,前項(xiàng)和為.若,,則()A. B. C. D.2.已知集合,則()A. B. C. D.3.為虛數(shù)單位,則的虛部為()A. B. C. D.4.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①以為直徑的圓與拋物線準(zhǔn)線相離;②直線與直線的斜率乘積為;③設(shè)過點(diǎn),,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號(hào)是()A.①② B.①③ C.②③ D.①②③5.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.176.拋物線的焦點(diǎn)為,點(diǎn)是上一點(diǎn),,則()A. B. C. D.7.如下的程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.158.已知集合,,則=()A. B. C. D.9.已知實(shí)數(shù)滿足約束條件,則的最小值是A. B. C.1 D.410.若,滿足約束條件,則的最大值是()A. B. C.13 D.11.若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左右焦點(diǎn)分別為,過的直線與雙曲線左支交于兩點(diǎn),,的內(nèi)切圓的圓心的縱坐標(biāo)為,則雙曲線的離心率為________.14.設(shè)(其中為自然對(duì)數(shù)的底數(shù)),,若函數(shù)恰有4個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為________.15.已知f(x)為偶函數(shù),當(dāng)x≤0時(shí),f(x)=e-x-1-x,則曲線y=f(x)16.函數(shù)的單調(diào)增區(qū)間為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點(diǎn)的極坐標(biāo).18.(12分)已知,,且.(1)求的最小值;(2)證明:.19.(12分)已知的內(nèi)角,,的對(duì)邊分別為,,,且.(1)求;(2)若的面積為,,求的周長.20.(12分)一張邊長為的正方形薄鋁板(圖甲),點(diǎn),分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開,再將沿折疊,沿折疊,使,重合,且重合于點(diǎn),制作成一個(gè)無蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計(jì))(1)若裁開的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無蓋三棱錐容器的容積最大.21.(12分)據(jù)《人民網(wǎng)》報(bào)道,美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動(dòng)主導(dǎo)了地球變綠.據(jù)統(tǒng)計(jì),中國新增綠化面積的來自于植樹造林,下表是中國十個(gè)地區(qū)在去年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)單位:公頃地區(qū)造林總面積造林方式人工造林飛播造林新封山育林退化林修復(fù)人工更新內(nèi)蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請(qǐng)根據(jù)上述數(shù)據(jù)分別寫出在這十個(gè)地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);(2)在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),求該地區(qū)新封山育林面積占造林總面積的比值超過的概率;(3)在這十個(gè)地區(qū)中,從退化林修復(fù)面積超過一萬公頃的地區(qū)中,任選兩個(gè)地區(qū),記X為這兩個(gè)地區(qū)中退化林修復(fù)面積超過六萬公頃的地區(qū)的個(gè)數(shù),求X的分布列及數(shù)學(xué)期望.22.(10分)如圖,設(shè)A是由個(gè)實(shí)數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實(shí)數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請(qǐng)寫出一個(gè)AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數(shù)n,對(duì)于所有的AS(n,n),求l(A)的取值集合.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)?,,所以解得,所以,所以,,,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于中檔題.2、A【解析】
考慮既屬于又屬于的集合,即得.【詳解】.故選:【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于基礎(chǔ)題.3、C【解析】
利用復(fù)數(shù)的運(yùn)算法則計(jì)算即可.【詳解】,故虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算以及復(fù)數(shù)的概念,注意復(fù)數(shù)的虛部為,不是,本題為基礎(chǔ)題,也是易錯(cuò)題.4、D【解析】
對(duì)于①,利用拋物線的定義,利用可判斷;對(duì)于②,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標(biāo)表示直線與直線的斜率乘積,即可判斷;對(duì)于③,將代入拋物線的方程可得,,從而,,利用韋達(dá)定理可得,再由,可用m表示,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以①正確.由題意可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對(duì)稱性可知,,兩點(diǎn)關(guān)于軸對(duì)稱,所以過點(diǎn),,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.5、C【解析】
首先根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗(yàn)證即可;【詳解】解:∵,∴當(dāng)時(shí),滿足,∴實(shí)數(shù)可以為8.故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.6、B【解析】
根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因?yàn)?,所?故選B【點(diǎn)睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.7、A【解析】
根據(jù)題意可知最后計(jì)算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計(jì)算的結(jié)果為的最大公約數(shù),按流程圖計(jì)算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點(diǎn)睛】本題考查的是利用更相減損術(shù)求兩個(gè)數(shù)的最大公約數(shù),難度較易.8、C【解析】
計(jì)算,,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,意在考查學(xué)生的計(jì)算能力.9、B【解析】
作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設(shè),則,易知當(dāng)直線經(jīng)過點(diǎn)時(shí),z取得最小值,由,解得,所以,所以,故選B.10、C【解析】
由已知畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點(diǎn)到坐標(biāo)原點(diǎn)的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點(diǎn)到坐標(biāo)原點(diǎn)的距離最大,即.故選:.【點(diǎn)睛】本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合的數(shù)學(xué)思想以及運(yùn)算求解能力,屬于基礎(chǔ)題.11、A【解析】
將整理成的形式,得到復(fù)數(shù)所對(duì)應(yīng)的的點(diǎn),從而可選出所在象限.【詳解】解:,所以所對(duì)應(yīng)的點(diǎn)為在第一象限.故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,考查了復(fù)數(shù)對(duì)應(yīng)的坐標(biāo).易錯(cuò)點(diǎn)是誤把當(dāng)成進(jìn)行計(jì)算.12、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
由題意畫出圖形,設(shè)內(nèi)切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質(zhì)結(jié)臺(tái)雙曲線的定義,求得的內(nèi)切圓的圓心的縱坐標(biāo),結(jié)合已知列式,即可求得雙曲線的離心率.【詳解】設(shè)內(nèi)切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯(lián)立①②解得:,又因圓心的縱坐標(biāo)為,.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),考查數(shù)形結(jié)合思想與運(yùn)算求解能力,屬于中檔題.14、【解析】
求函數(shù),研究函數(shù)的單調(diào)性和極值,作出函數(shù)的圖象,設(shè),若函數(shù)恰有4個(gè)零點(diǎn),則等價(jià)為函數(shù)有兩個(gè)零點(diǎn),滿足或,利用一元二次函數(shù)根的分布進(jìn)行求解即可.【詳解】當(dāng)時(shí),,由得:,解得,由得:,解得,即當(dāng)時(shí),函數(shù)取得極大值,同時(shí)也是最大值,(e),當(dāng),,當(dāng),,作出函數(shù)的圖象如圖,設(shè),由圖象知,當(dāng)或,方程有一個(gè)根,當(dāng)或時(shí),方程有2個(gè)根,當(dāng)時(shí),方程有3個(gè)根,則,等價(jià)為,當(dāng)時(shí),,若函數(shù)恰有4個(gè)零點(diǎn),則等價(jià)為函數(shù)有兩個(gè)零點(diǎn),滿足或,則,即(1)解得:,故答案為:【點(diǎn)睛】本題主要考查函數(shù)與方程的應(yīng)用,利用換元法進(jìn)行轉(zhuǎn)化一元二次函數(shù)根的分布以及.求的導(dǎo)數(shù),研究函數(shù)的的單調(diào)性和極值是解決本題的關(guān)鍵,屬于難題.15、y=2x【解析】試題分析:當(dāng)x>0時(shí),-x<0,則f(-x)=ex-1+x.又因?yàn)閒(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點(diǎn)】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識(shí)拓展】本題題型可歸納為“已知當(dāng)x>0時(shí),函數(shù)y=f(x),則當(dāng)x<0時(shí),求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當(dāng)x<0時(shí),函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).16、【解析】
先求出導(dǎo)數(shù),再在定義域上考慮導(dǎo)數(shù)的符號(hào)為正時(shí)對(duì)應(yīng)的的集合,從而可得函數(shù)的單調(diào)增區(qū)間.【詳解】函數(shù)的定義域?yàn)?,令,則,故函數(shù)的單調(diào)增區(qū)間為:.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,注意先考慮函數(shù)的定義域,再考慮導(dǎo)數(shù)在定義域上的符號(hào),本題屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(2,).【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式求解.(2)先把兩個(gè)方程均化為普通方程,求解公共點(diǎn)的直角坐標(biāo),然后化為極坐標(biāo)即可.【詳解】(1)∵曲線C的極坐標(biāo)方程為,∴,則,即.(2),∴,聯(lián)立可得,(舍)或,公共點(diǎn)(,3),化為極坐標(biāo)(2,).【點(diǎn)睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及交點(diǎn)的求解,熟記極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式是求解的關(guān)鍵,交點(diǎn)問題一般是統(tǒng)一一種坐標(biāo)形式求解后再進(jìn)行轉(zhuǎn)化,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).18、(1)(2)證明見解析【解析】
(1)利用基本不等式即可求得最小值;(2)關(guān)鍵是配湊系數(shù),進(jìn)而利用基本不等式得證.【詳解】(1),當(dāng)且僅當(dāng)“”時(shí)取等號(hào),故的最小值為;(2),當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).故.【點(diǎn)睛】本題主要考查基本不等式的運(yùn)用,屬于基礎(chǔ)題.19、(1);(2).【解析】
(1)利用正弦定理將目標(biāo)式邊化角,結(jié)合倍角公式,即可整理化簡求得結(jié)果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結(jié)合即可求得周長.【詳解】(1)由題設(shè)得.由正弦定理得∵∴,所以或.當(dāng),(舍)故,解得.(2),從而.由余弦定理得.解得.∴.故三角形的周長為.【點(diǎn)睛】本題考查由余弦定理解三角形,涉及面積公式,正弦的倍角公式,應(yīng)用正弦定理將邊化角,屬綜合性基礎(chǔ)題.20、(1),;(2)當(dāng)值為時(shí),無蓋三棱錐容器的容積最大.【解析】
(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫出三角形面積,求其平方導(dǎo)數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當(dāng)時(shí),,當(dāng),時(shí),,當(dāng)時(shí),有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當(dāng)時(shí),取得最大值,無蓋三棱錐容器的容積最大.答:當(dāng)值為時(shí),無蓋三棱錐容器的容積最大.【點(diǎn)睛】本題考查棱錐體積的求法,考查空間想象能力與思維能力,訓(xùn)練了利用導(dǎo)數(shù)求最值,屬于中檔題.21、(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海??;(2);(3)分布列見詳解,數(shù)學(xué)期望為【解析】
(1)通過數(shù)據(jù)的觀察以及計(jì)算人工造林面積與造林總面積比值,可得結(jié)果.(2)通過數(shù)據(jù)的觀察以及計(jì)算新封山育林面積與造林總面積比值,得出比值超過的地區(qū)個(gè)數(shù),然后可得結(jié)果.(3)計(jì)算退化林修復(fù)面積超過一萬公頃的地區(qū)中選兩個(gè)地區(qū)總數(shù),退化林修復(fù)面積超過六萬公頃的地區(qū)的個(gè)數(shù)為,列出所有取值并計(jì)算相應(yīng)概率,然后可得結(jié)果.【詳解】(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海省.(2)記事件A:在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),該地區(qū)新封山育林面積占總面積的比值超過根據(jù)數(shù)據(jù)可知:青海地區(qū)人工造林面積占總面積比超過,則(3)退化林修復(fù)面積超過一萬公頃有6個(gè)地區(qū):內(nèi)蒙、河北、河南、重慶、陜西、新疆,其中退化林修復(fù)面積超過六萬公頃有3個(gè)地區(qū):內(nèi)蒙、河北、重慶,所以X的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽省六安市2023-2024年度滬科版數(shù)學(xué)九年級(jí)上學(xué)期綜合測試卷
- 2024-2030年中國大米行業(yè)營銷戰(zhàn)略與供應(yīng)情況預(yù)測報(bào)告
- 2024-2030年中國垃圾中轉(zhuǎn)設(shè)備行業(yè)發(fā)展分析及投資戰(zhàn)略研究報(bào)告版
- 2024-2030年中國商業(yè)地產(chǎn)行業(yè)發(fā)展前景預(yù)測及投融資策略分析報(bào)告
- 2024-2030年中國衛(wèi)浴墊產(chǎn)業(yè)未來發(fā)展趨勢及投資策略分析報(bào)告
- 2024年版:呂桃與配偶解除婚姻關(guān)系協(xié)議
- 2024年施工安全協(xié)議書編制指南及審查標(biāo)準(zhǔn)2篇
- 2024年版離婚合同規(guī)范格式版B版
- 2024年個(gè)人信用評(píng)估與貸款審核委托協(xié)議3篇
- 2024年版:市場推廣專員合同3篇
- 2023年湖州教師招聘安吉縣招聘擇優(yōu)錄用事業(yè)編制教師筆試真題
- 24秋國家開放大學(xué)《公共關(guān)系學(xué)》實(shí)訓(xùn)任務(wù)(5)答案
- 學(xué)校傳染病控制課件
- 福建省泉州市2023-2024學(xué)年高一上學(xué)期期末質(zhì)檢英語試題(解析版)
- 2024秋期國家開放大學(xué)專科《建設(shè)法規(guī)》一平臺(tái)在線形考(形成性作業(yè)一至五)試題及答案
- 中華人民共和國民法典(總則)培訓(xùn)課件
- 第三單元第1課 標(biāo)志設(shè)計(jì) 課件 2024-2025學(xué)年人教版(2024)初中美術(shù)七年級(jí)上冊(cè)
- 蘇教版(2024新版)七年級(jí)上冊(cè)生物期末模擬試卷 3套(含答案)
- 腫瘤物理消融治療新進(jìn)展
- 專題10 特殊的平行四邊形中的最值模型之胡不歸模型(原卷版)
- 賽力斯招聘在線測評(píng)題
評(píng)論
0/150
提交評(píng)論