漯河食品職業(yè)學(xué)院《智慧醫(yī)學(xué)數(shù)據(jù)處理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
漯河食品職業(yè)學(xué)院《智慧醫(yī)學(xué)數(shù)據(jù)處理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
漯河食品職業(yè)學(xué)院《智慧醫(yī)學(xué)數(shù)據(jù)處理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
漯河食品職業(yè)學(xué)院《智慧醫(yī)學(xué)數(shù)據(jù)處理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
漯河食品職業(yè)學(xué)院《智慧醫(yī)學(xué)數(shù)據(jù)處理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁漯河食品職業(yè)學(xué)院

《智慧醫(yī)學(xué)數(shù)據(jù)處理與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的知識(shí)圖譜用于表示實(shí)體之間的關(guān)系和知識(shí)。假設(shè)一個(gè)知識(shí)圖譜被用于智能問答系統(tǒng),以下關(guān)于知識(shí)圖譜的描述,正確的是:()A.知識(shí)圖譜中的知識(shí)是固定不變的,不能進(jìn)行更新和擴(kuò)展B.知識(shí)圖譜能夠自動(dòng)從大量文本中抽取知識(shí),無需人工干預(yù)C.可以通過知識(shí)圖譜的推理功能發(fā)現(xiàn)隱藏的知識(shí)和關(guān)系D.知識(shí)圖譜只適用于特定領(lǐng)域的知識(shí)表示,通用性較差2、在人工智能的研究中,遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于醫(yī)學(xué)圖像分析,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型應(yīng)用于新的醫(yī)學(xué)圖像任務(wù),無需任何調(diào)整B.由于數(shù)據(jù)領(lǐng)域差異較大,遷移學(xué)習(xí)在這種情況下不可能有效C.對(duì)原模型進(jìn)行適當(dāng)?shù)奈⒄{(diào),并利用少量的醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行再訓(xùn)練,可以提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只能應(yīng)用于相似的數(shù)據(jù)類型和任務(wù),不能跨越不同領(lǐng)域3、在人工智能的研究中,可解釋性是一個(gè)重要的問題。假設(shè)我們訓(xùn)練了一個(gè)復(fù)雜的深度學(xué)習(xí)模型用于醫(yī)療診斷,但是其決策過程難以理解。那么,以下關(guān)于模型可解釋性的說法,哪一項(xiàng)是不正確的?()A.可解釋性對(duì)于建立用戶信任至關(guān)重要B.一些可視化技術(shù)可以幫助理解模型的內(nèi)部工作機(jī)制C.為了追求高精度,模型的可解釋性可以被犧牲D.可解釋性有助于發(fā)現(xiàn)模型可能存在的偏差和錯(cuò)誤4、在自然語言處理中,機(jī)器翻譯是一個(gè)重要的應(yīng)用。假設(shè)正在開發(fā)一種新的機(jī)器翻譯模型,以下關(guān)于機(jī)器翻譯技術(shù)的描述,正確的是:()A.基于規(guī)則的機(jī)器翻譯方法總是能夠生成最準(zhǔn)確和自然的翻譯結(jié)果B.神經(jīng)網(wǎng)絡(luò)機(jī)器翻譯模型不需要大量的平行語料進(jìn)行訓(xùn)練就能達(dá)到很好的效果C.結(jié)合統(tǒng)計(jì)方法和神經(jīng)網(wǎng)絡(luò)的機(jī)器翻譯模型能夠更好地處理復(fù)雜的語言結(jié)構(gòu)和語義D.機(jī)器翻譯的質(zhì)量只取決于所使用的算法,與語言的文化背景和語境無關(guān)5、人工智能中的智能代理能夠自主地感知環(huán)境、做出決策并執(zhí)行動(dòng)作。假設(shè)一個(gè)智能代理在游戲中與其他玩家交互。以下關(guān)于智能代理的描述,哪一項(xiàng)是錯(cuò)誤的?()A.智能代理可以通過學(xué)習(xí)和經(jīng)驗(yàn)積累來改進(jìn)自己的策略B.它能夠根據(jù)環(huán)境的變化實(shí)時(shí)調(diào)整自己的行為,以達(dá)到目標(biāo)C.智能代理的決策完全基于預(yù)設(shè)的規(guī)則,無法從環(huán)境中學(xué)習(xí)和適應(yīng)D.多個(gè)智能代理之間可以通過協(xié)作或競爭來實(shí)現(xiàn)更復(fù)雜的任務(wù)6、在人工智能的發(fā)展中,倫理和社會(huì)問題日益受到關(guān)注。假設(shè)一個(gè)城市正在考慮廣泛部署人工智能監(jiān)控系統(tǒng),以下關(guān)于人工智能倫理的描述,正確的是:()A.只要人工智能系統(tǒng)能夠提高安全性,就無需考慮其可能對(duì)個(gè)人隱私造成的侵犯B.在部署人工智能系統(tǒng)時(shí),不需要考慮公平性和透明度,只要結(jié)果有效就行C.應(yīng)該在開發(fā)和使用人工智能技術(shù)時(shí),遵循倫理原則,制定相關(guān)法規(guī)和政策,以確保其有益和無害的應(yīng)用D.人工智能的倫理問題是次要的,技術(shù)發(fā)展才是關(guān)鍵,倫理可以在后期考慮7、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對(duì)醫(yī)學(xué)影像中的病變區(qū)域進(jìn)行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時(shí)效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動(dòng)學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和改進(jìn)8、情感分析是自然語言處理中的一個(gè)重要任務(wù)。以下關(guān)于情感分析的描述,不準(zhǔn)確的是()A.情感分析旨在判斷文本所表達(dá)的情感傾向,如積極、消極或中性B.可以基于詞典、機(jī)器學(xué)習(xí)算法或深度學(xué)習(xí)模型來進(jìn)行情感分析C.情感分析在社交媒體監(jiān)測(cè)、客戶反饋分析等方面有廣泛的應(yīng)用D.情感分析的結(jié)果總是準(zhǔn)確無誤的,不受文本的復(fù)雜性和多義性影響9、在人工智能的自動(dòng)駕駛道德決策中,假設(shè)車輛面臨一個(gè)不可避免的碰撞場(chǎng)景,需要在保護(hù)車內(nèi)乘客和避免傷害行人之間做出選擇。以下哪種決策原則在倫理上更被接受?()A.優(yōu)先保護(hù)車內(nèi)乘客的生命安全B.隨機(jī)選擇保護(hù)對(duì)象C.基于最大多數(shù)人的利益進(jìn)行決策D.這是一個(gè)無法確定的道德困境,沒有明確的決策原則10、在人工智能的圖像生成任務(wù)中,例如生成逼真的人臉圖像或風(fēng)景圖像,假設(shè)需要生成具有高度細(xì)節(jié)和真實(shí)感的圖像。以下哪種技術(shù)或模型在圖像生成方面表現(xiàn)較為出色?()A.生成對(duì)抗網(wǎng)絡(luò)(GANs),通過對(duì)抗訓(xùn)練生成圖像B.自編碼器(Autoencoder),壓縮和解壓縮圖像C.傳統(tǒng)的圖像處理算法,如濾波和邊緣檢測(cè)D.隨機(jī)生成像素值來創(chuàng)建圖像11、在人工智能的發(fā)展中,機(jī)器學(xué)習(xí)是一個(gè)重要的分支。假設(shè)一個(gè)醫(yī)療團(tuán)隊(duì)想要利用機(jī)器學(xué)習(xí)來預(yù)測(cè)某種疾病的發(fā)病風(fēng)險(xiǎn),他們收集了大量患者的基因數(shù)據(jù)、生活習(xí)慣、病史等多維度信息。在選擇機(jī)器學(xué)習(xí)算法時(shí),需要考慮數(shù)據(jù)的特點(diǎn)、模型的復(fù)雜度和預(yù)測(cè)的準(zhǔn)確性等因素。以下哪種機(jī)器學(xué)習(xí)算法可能最適合這個(gè)任務(wù)?()A.決策樹算法,通過對(duì)特征的逐步劃分進(jìn)行預(yù)測(cè)B.線性回歸算法,建立變量之間的線性關(guān)系進(jìn)行預(yù)測(cè)C.支持向量機(jī)算法,尋找最優(yōu)分類超平面進(jìn)行分類預(yù)測(cè)D.樸素貝葉斯算法,基于概率計(jì)算進(jìn)行分類12、在人工智能的圖像生成任務(wù)中,生成對(duì)抗網(wǎng)絡(luò)(GAN)表現(xiàn)出色。假設(shè)要生成逼真的人物肖像,以下哪個(gè)因素對(duì)于生成效果的影響最為關(guān)鍵?()A.判別器的精度B.生成器的網(wǎng)絡(luò)結(jié)構(gòu)C.訓(xùn)練數(shù)據(jù)的質(zhì)量和多樣性D.優(yōu)化算法的選擇13、在人工智能的強(qiáng)化學(xué)習(xí)中,探索與利用的平衡是一個(gè)關(guān)鍵問題。假設(shè)一個(gè)智能體在一個(gè)未知的環(huán)境中學(xué)習(xí),既要充分探索新的策略,又要利用已有的有效策略。以下哪種策略在平衡探索與利用方面表現(xiàn)較好?()A.ε-貪心策略B.基于置信上限的策略C.隨機(jī)策略D.固定策略14、在人工智能的發(fā)展中,倫理和社會(huì)問題日益受到關(guān)注。假設(shè)一個(gè)人工智能系統(tǒng)被用于招聘決策,以下關(guān)于這種應(yīng)用可能帶來的問題,正確的是:()A.人工智能系統(tǒng)能夠完全消除招聘中的人為偏見,保證公平公正B.由于數(shù)據(jù)偏差和算法不透明,可能導(dǎo)致不公平的招聘結(jié)果和歧視C.企業(yè)無需對(duì)人工智能招聘系統(tǒng)的決策負(fù)責(zé),因?yàn)槭撬惴ㄗ詣?dòng)做出的決策D.人工智能招聘系統(tǒng)不會(huì)對(duì)求職者的個(gè)人隱私造成任何威脅15、深度學(xué)習(xí)模型在圖像識(shí)別任務(wù)中取得了顯著的成果。假設(shè)要訓(xùn)練一個(gè)深度卷積神經(jīng)網(wǎng)絡(luò)來識(shí)別不同種類的動(dòng)物,以下關(guān)于模型訓(xùn)練的描述,正確的是:()A.增加網(wǎng)絡(luò)的層數(shù)一定能提高模型的識(shí)別準(zhǔn)確率,層數(shù)越多越好B.訓(xùn)練數(shù)據(jù)的數(shù)量和質(zhì)量對(duì)模型的性能影響不大,關(guān)鍵在于網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計(jì)C.模型在訓(xùn)練集上的準(zhǔn)確率很高,但在測(cè)試集上的準(zhǔn)確率很低,可能是出現(xiàn)了過擬合現(xiàn)象D.深度學(xué)習(xí)模型不需要進(jìn)行調(diào)參和優(yōu)化,直接使用默認(rèn)參數(shù)就能得到較好的結(jié)果二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)簡述自監(jiān)督學(xué)習(xí)的原理和方法。2、(本題5分)簡述決策樹算法的原理和應(yīng)用。3、(本題5分)解釋人工智能在智能營銷活動(dòng)策劃中的策略。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用Python的PyTorch庫,構(gòu)建一個(gè)基于注意力機(jī)制的圖神經(jīng)網(wǎng)絡(luò)(GNN)模型,對(duì)學(xué)術(shù)論文引用網(wǎng)絡(luò)數(shù)據(jù)進(jìn)行研究領(lǐng)域的分類和預(yù)測(cè)。2、(本題5分)利用Python的Scikit-learn庫,實(shí)現(xiàn)一個(gè)決策樹算法對(duì)乳腺癌數(shù)據(jù)集進(jìn)行分類。詳細(xì)展示數(shù)據(jù)預(yù)處理、特征選擇、模型訓(xùn)練和預(yù)測(cè)的過程,并分析模型的性能和決策路徑。3、(本題5分)使用Python和Keras框架,構(gòu)建一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,用于對(duì)MNIST手寫數(shù)字?jǐn)?shù)據(jù)集進(jìn)行識(shí)別。設(shè)計(jì)合適的網(wǎng)絡(luò)結(jié)構(gòu),包括卷積層、池化層和全連接層,并對(duì)模型進(jìn)行訓(xùn)練和測(cè)試。4、(本題5分)使用Python中的TensorFlow框架,構(gòu)建一個(gè)基于擴(kuò)散模型(DiffusionModel)的圖像生成模型,生成高質(zhì)量的逼真圖像。5、(本題5分)在Python中,運(yùn)用強(qiáng)化學(xué)習(xí)算法(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論