Capgemini-生成式人工智能與網(wǎng)絡(luò)安全:經(jīng)典之作(英)_第1頁
Capgemini-生成式人工智能與網(wǎng)絡(luò)安全:經(jīng)典之作(英)_第2頁
Capgemini-生成式人工智能與網(wǎng)絡(luò)安全:經(jīng)典之作(英)_第3頁
Capgemini-生成式人工智能與網(wǎng)絡(luò)安全:經(jīng)典之作(英)_第4頁
Capgemini-生成式人工智能與網(wǎng)絡(luò)安全:經(jīng)典之作(英)_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

GenerativeAIandCybersecurity:

Arevisitedclassic

ThegreatestriskswhenincorporatinggenerativeAIintoabusinessstructureare:

Misleadingoutcomesduetomodelhallucination

Dataleakageandcopyrightissuesduetounintentionaldisseminationorinclusionofregulatedor

company-confidentialdata

Trainingdata–subjects’privacyandconsentviolationswith

Modelcorruptionandabusewhenretrainingisbasedoncustomerresponsedata

AI

inadequateneed-to-knowandneed-to-useintrainingdataanddataoutputsmanagement

MeetingregulatoryandethicalresponsibilitiesinGenAIuse

Ethicalissuesorbiased

conclusionsbecauseofinaccurate,

incomplete,ortamperedtrainingdata

Thebiggest

risksaretodata

WhendesigningforsecuregenerativeAI,datariskstakepriority.Broadlyspeaking,theserisksoriginatefromthreeactivities:

Theexposureofconfidentialand/orregulatedinformation

Inaccurateinformationdisruptsprocesses,whetherdecisionaloroperational

GenAIfollowsafamiliarpatternforadoptionandcybersecurity,

promptingquestionsreminiscentofthosethataccompaniedthe

earlydaysofcloudcomputing.TherapidriseofgenerativeAI

presentsorganizationswiththeusualinnovationdilemma:isit

bettertoadoptacautiousandrestrictiveapproach,riskingmissingoutonopportunities,ortograntmorefreedom,attheriskof

exposingthemselvestonewrisks?

PotentialreputationaldamageiscausedwhenGenAItoolsareusedaschatbotsservingasinterfacesbetweencustomersandanorganization

Theseriskshavecommonthemesofidentifying,scrubbing,andprotectingtherightdataatthe

righttimeandputtingtherightguardrailsinplacearoundaGenAIsolution.Despiteitspotentialandtheexcitementsurroundingit,GenAIisultimatelyanotherenterprisetool:itrequirestheapplicationandadaptationofpolicies,controlsandmeasures

implementedatenterpriselevelandwithintheAIecosystem.Itbringschallengesofoperatingmodelsinternallyandmonitoringtheirinputandoutputcompliantly.

InaGenAIsystem,foundationalsecuritymustbedoneacrossfourdimensions:

.Framework,governance,andriskmanagement

.Dataandidentitysecurity

.TrustedGenAImodelsandtheiroutcomes

.Infrastructureandapplicationmonitoringanddelivery

ThreatmodelsareavailablefromNIST,MITRE,

Microsoft,Google,andothersintheindustrytobuildfasterandbereadyfornewrisks.

AGenAIsystemcanhavedifferentsecurityscopes.Usingcloudserviceproviders(CSP)asexamples,eachCSP(alsoknownashyperscalers)offersgenerative

AIsystemswithverydifferentsecurityscopes,

andeachproviderdefinesthisscopedifferently.

ConsidersharedresponsibilityaroundthereferencearchitecturefoundinFigure1.

2|GenerativeAI&Cybersecurity

GenerativeAI&Cybersecurity|3

Data

Datacollection,datapreparationandtransformation

Varioususecasesthatmatterstotheendusersandarerelevantbusinesscases

modelsthataretailoredtoagivenindustryorusecaseToolstooperationalizeGen-AImodels

Gen-AIapplicationssuchascompute,networkandstorage

Applications

SoftwareapplicationsthatprimarilyuseGen-AImodelstoperformatask

Monitoring&Maintain

Monitorperformance,userexperienceandoutcomequality

Models&Tools

Gen-AIfoundationmodels&domainspecific

Infrastructure

Infrastructurecomponentsusedtobuildout

Network

Communication

Storage

Compute

Figure1:ConceptualreferencearchitectureforGenAIsharedresponsibility.

AmazonWebServicesfocusesonprovidingthe

infrastructureforgenerativeAImodels,aswith

AmazonBedrock.Variousdegreesofcustomizationandownershiparepossible.Theclient’ssystemis

definedastheprovidedinfrastructure,andtheirpartofsharedresponsibilityincludesthesecurityofthemodels,data,andapplications.

GoogleCloudPlatform’s(GCP)approachfocusesontheinfrastructureandmodels,offeringVertexAIandtheModelGardentoempowercustomers.Customers

focusontheapplicationlayer,monitoring,andtheGenAIinterface,whileGCPhassharedresponsibilityfromthemodeldowntodataandinfrastructure.

WithMicrosoftAzure’sCo-pilot,theCSPtakes

ownershipofinfrastructure,model,application,and

everythinginbetween..Thecustomerfocusesondatasecurityandbusinesspurposes.Datainterfacesdefinetheirsystem,whilethemodels,infrastructure,and

applicationinterfacearetreatedmoreasblackboxes.

4|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|5

Establishing

asecurity

frameworkwithgovernance

PositionsonhowtoregulateGenAIvarywidely,

fromoutrightprohibitiontocompletelaissez-faire.Nosinglegovernmentorsupranationalpolitical

entitywillbeabletodictatehowGenAIproliferates.Nevertheless,enterprisesmustworkwithinlegal

andregulatorystructuresbasedontheirclients,geographies,andethics.

Toanticipatewhat’sexpectedingenerativeAIgovernance,enterprisesshouldconsiderthefollowing:

.ExistingandupcomingregulationsthatwillinfluenceAIuse

.Anenterprise’suniquerisktolerancesfortechnologyandregulations

.TeammembereducationonhowGenAIworks,itsinherentproblems,andriskssuchasdataleaksandtheorganization’sownpolicies

.AsecureGenAIreferencearchitecturedescribinghowtomanagerisks

Thereferencearchitecturemustaddresstherisksofvariousmodelsindiverseways.Afullproprietarysolution,includingGenAImodeldevelopmentandpre-training,meansanorganizationwillhavethe

abilityandobligationtoaddressitsspecificrisksend-to-end.

InthecaseofSoftware-as-a-ServicegenerativeAI,manyrisksneedtobeaddressedthroughcontractandthird-andfourth-partyriskmanagement.

OrganizationscanalsodeploymorethanoneGenAIsolutionwithdifferentarchitecturemodels,andhybridmodels.

Governancebodies-suchasaGenerativeAICenterofExcellence-areneededinenterprisestohelpshape

thesecureadoptionofGenAI.Theyhelpaccelerate

low-risk,high-impactbusinessexperimentswhile

enforcingappropriateoversightofhigh-riskplans.Bydevelopingrepeatable,enforceable,anddisseminatedguidelines,enterprisescanleverageGenAIsolutionsmorequicklyandsecurely.

Providerassumedresponsibility

SaaS

ExternalModel

PaaS

IaaS

Applications

Monitoring&Maintain

Models&Tools

Data

Infrastructure

M

Network

Communication

Storage

Compute

Figure2:SharedresponsibilitymodelsforvariouscloudproviderGenAIdeliverymodels

6|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|7

SecuringData

GenAIlackshumanfilterswhenitproducesdata:themachinesearchesthrougheverythingitcanaccess

andthenreproducesthisknowledgewithcompletecandorregardlessofsensitivity.Itis,therefore,

imperativetosetlimits.Todothis,enterprisesmust

inventorytheirdata:classifyit;implementcontrolsforquality,representativeness,integrity,andaccess;andcreaterepositoriesofauthorizeddataforGenAIapplications.

GenAI’sconsumptionofdatamakesdata

classificationevenmoreessentialtoadequately

protectanenterpriseandcustomers.Classification

allowstightercontrolofdatausedtotrain,specialize,andrefinemodels.Accesstoitsoutputcanbe

restrictedanddataleakprotectiontoolscanbe

implemented;oraresponsecanbelimitedusingasubsetofdatabasedonaright-to-knowrule.

Withathird-partyLLM,thereislimitedabilityto

build“native”guardrailsaroundinputsandoutputs.Likewise,theabilitytoimplementguardrailsinsidethelearningphasesofaGenerativeAdversarial

Network1islimitedwhenusingclosedmodelsinan

Data

1.Training

Themodelisbuiltwhich

encodestherealtionships,

patternsandsequences

withintrainingdataand

modelvalidationdata.

TrainedModel

3.EnsuringCorrectness

Thereisnoguranteeofreal-worldcorrectnessfromagenerativeAImodels,anditsometimes

hallucinates?ctionalresponse

2.Generation

Thetrainedmodelcanthengeneratenewoutputsliketheoriginaldataitwastrainedon

(Optional)

FineTuning

Thegenericfoundation

modelmightbe?ne-tuned

togiveitexposuretoa

specialistarea.

(Optional)Alignment

Modelmightbetweaked

toaligninmorewith

expectedhumanresponse

Figure3:DatalifecycleinsideagenerativeAIapplication

application.Itiscriticaltoconsiderwhetherdata

canbeinspectedandvalidated,andwhetherits

inputsandoutputscanbeobservedwhenchoosingcomponentsofasystem.

Amodel’soutputmustbesubjecttoverification

todetecthallucinations,maliciousreinforcement,

ordriftsfromexpectedbehaviorovertime.When

usingreal-timemodeloutput,suchaswithachatbot,theobservabilityofpastperformancetopreempt

unacceptableresponsesisimportant.Akeypointis

tounderstandthedatalifecycleanditssensitivity,ascapturedinFigure3.Datasecurityrequirementscanchangeoveritslifecycle,dependingonitsproximityto,orcominglingwithotherdata.

SuccessfullysecuringGenAIsolutionsisamulti-

disciplineapproachthatrequirespartnerships

betweencybersecurity,datagovernance,data

science,andlegalandcompliance,sincedisciplineddatamanagementisattheheartofachievingGenAIdatasecurity.

Dependencies

Data

Governance

Data

Sciences

Security

Legal&Compliance

Figure4:Multi-disciplineinteractionsnecessaryforGenAIsuccess

8|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|9

TrustedGen

AImodelsandtheiroutcomes

Itmaynotbepossibletogainaccesstoandthen

validatealldatasetsusedduringthelifecycleof

aGenAIsolution.Amodelsuchasthecommonly

usedLargeLanguageModel(LLM),multi-model

models,andtransformer-basedmodelsgeneratingoutcomesthroughuserpromptorAPIrequestscanfallintooneofthefollowingmodelcategories:

.Developedandinitiallytrainedbyanexternal

party(OpenAI’sChatGPT,forinstance)andused“asis”bytheenterprise

.Developedandinitiallytrainedbyanexternal

party,thenspecializedbytheenterprisetoa

specificdomain(i.e.,specialism)withanewdatasettoaddressspecificusecases

.DevelopedandtrainedbytheenterpriseentirelySupplychainsecurityandthird/fourth-partyrisk

managementarecrucialforthefirsttwocategories.

Itisevenmoreimportanttointegratesecuritycontrolssuchasmodelauditability,dataleakageprevention,hallucinationandbiasdetection(i.e.guardrails)intotheapplicationdevelopment

pipeline.

Dataquality

Therecurrentuseandprovenanceoftrainingdataisafocalpointwhenusingexternallysourcedmodels.Itscomposition,howoftenitchanges,andhowrecursionbetweencustomerprompt/responsepairingsand

reinforcementtrainingofthemodeloccursshouldbeclear.

Whendevelopingandtrainingaproprietarymodel(thirdcategoryabove),someriskscanbeamplifiedwhileothersaremitigated.Theneedtounderstanddata’sprovenanceandclassificationoftrainingdatawhilealsotestingforbiasandderogatoryresponsesfallsontheenterprise,eventhoughthosecanbe

differentdisciplines.Atthesametime,therisks

ofrecursivetrainingfromprompt/responsepairsarereducedastheinformationdoesn’tleavethelocalmodel.

Forallmodels,organizationsmustapplytheirownadditional,adaptablecontrols,suchas:

.Specificsecuritymonitoringrules

.Completelyoriginalmeasures,suchascontrolstodetectspecificnewattacksoruserbehaviors.

.Formultiandhybridarchitectures,APIsecurityandCI/CDsecure-by-designdomains

Thekeytoassuranceofdata’sintegrityisdue

diligenceonaprovider’ssecurity,privacycontrols,andcompliance.Theircommitmentsandresponsibilities

shouldbeclearlydefinedinanycontract.

10|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|11

Application

and

infrastructuremonitoring

anddelivery

ThefinalaspectofsecurityforGenAIisprotecting

applicationsfrombeingrenderedinoperativeor

unavailable.Thisrequiresdeployingsecuritycontrolswithinapplicationsandinfrastructure,covering

compute,endpoint,network,andstorage.

Thesamesecurityandcompliancehygieneappliedtoclassicsecuritymustbeappliedhere,especiallythosehandlingsensitivedata.Corporatesecurity

policiesandmandatorysecuritycontrolsovertheselayersareasimportantasever.

GenAIapplicationswillrequiresomenewsecuritycontrols,suchaspromptanalysis,andadaptationto

existingsecuritycontrols,suchasedgeprotection,tobeeffective.Buildingadequate,automated

governancearounddataclassificationandusageshouldbepartofanysecurityroadmap.

SoftwaresupplychainmanagementismoreimportantingenerativeAIapplicationdevelopment,e.g.,for

pinningdependencyversionsinmodeldevelopmenttoensuretrainingrunsdonotbecomecorrupted.Thisisimportantformonitoringanddeliverysinceitisa

partofthesoftwaredeliverylifecycle.Continuous

Integration(CI)andcontinuousdelivery(CD)throughaDevSecOpspipelineforapplicationdevelopment

canbeusedtosecuremodeldevelopment.Red

teaming2,anapplicationtotestforvulnerabilities,shouldincludetestingofanyprompts.Thisaimstostopmalicioususersfrom:

.Corruptingorrecoveringtrainingdata

.Manipulatingresultsforotherusers

.Performingdenialofserviceattacks

.Exfiltratingdata

AsgenerativeAIevolves,securityfunctionsnativetoGenAIwilltoo,aswilltheircapabilitiestointegratewithexternalsecuritysolutions.

12|GenerativeA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論