版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
GenerativeAIandCybersecurity:
Arevisitedclassic
ThegreatestriskswhenincorporatinggenerativeAIintoabusinessstructureare:
Misleadingoutcomesduetomodelhallucination
Dataleakageandcopyrightissuesduetounintentionaldisseminationorinclusionofregulatedor
company-confidentialdata
Trainingdata–subjects’privacyandconsentviolationswith
Modelcorruptionandabusewhenretrainingisbasedoncustomerresponsedata
AI
inadequateneed-to-knowandneed-to-useintrainingdataanddataoutputsmanagement
MeetingregulatoryandethicalresponsibilitiesinGenAIuse
Ethicalissuesorbiased
conclusionsbecauseofinaccurate,
incomplete,ortamperedtrainingdata
Thebiggest
risksaretodata
WhendesigningforsecuregenerativeAI,datariskstakepriority.Broadlyspeaking,theserisksoriginatefromthreeactivities:
Theexposureofconfidentialand/orregulatedinformation
Inaccurateinformationdisruptsprocesses,whetherdecisionaloroperational
GenAIfollowsafamiliarpatternforadoptionandcybersecurity,
promptingquestionsreminiscentofthosethataccompaniedthe
earlydaysofcloudcomputing.TherapidriseofgenerativeAI
presentsorganizationswiththeusualinnovationdilemma:isit
bettertoadoptacautiousandrestrictiveapproach,riskingmissingoutonopportunities,ortograntmorefreedom,attheriskof
exposingthemselvestonewrisks?
PotentialreputationaldamageiscausedwhenGenAItoolsareusedaschatbotsservingasinterfacesbetweencustomersandanorganization
Theseriskshavecommonthemesofidentifying,scrubbing,andprotectingtherightdataatthe
righttimeandputtingtherightguardrailsinplacearoundaGenAIsolution.Despiteitspotentialandtheexcitementsurroundingit,GenAIisultimatelyanotherenterprisetool:itrequirestheapplicationandadaptationofpolicies,controlsandmeasures
implementedatenterpriselevelandwithintheAIecosystem.Itbringschallengesofoperatingmodelsinternallyandmonitoringtheirinputandoutputcompliantly.
InaGenAIsystem,foundationalsecuritymustbedoneacrossfourdimensions:
.Framework,governance,andriskmanagement
.Dataandidentitysecurity
.TrustedGenAImodelsandtheiroutcomes
.Infrastructureandapplicationmonitoringanddelivery
ThreatmodelsareavailablefromNIST,MITRE,
Microsoft,Google,andothersintheindustrytobuildfasterandbereadyfornewrisks.
AGenAIsystemcanhavedifferentsecurityscopes.Usingcloudserviceproviders(CSP)asexamples,eachCSP(alsoknownashyperscalers)offersgenerative
AIsystemswithverydifferentsecurityscopes,
andeachproviderdefinesthisscopedifferently.
ConsidersharedresponsibilityaroundthereferencearchitecturefoundinFigure1.
2|GenerativeAI&Cybersecurity
GenerativeAI&Cybersecurity|3
Data
Datacollection,datapreparationandtransformation
Varioususecasesthatmatterstotheendusersandarerelevantbusinesscases
modelsthataretailoredtoagivenindustryorusecaseToolstooperationalizeGen-AImodels
Gen-AIapplicationssuchascompute,networkandstorage
Applications
SoftwareapplicationsthatprimarilyuseGen-AImodelstoperformatask
Monitoring&Maintain
Monitorperformance,userexperienceandoutcomequality
Models&Tools
Gen-AIfoundationmodels&domainspecific
Infrastructure
Infrastructurecomponentsusedtobuildout
Network
Communication
Storage
Compute
Figure1:ConceptualreferencearchitectureforGenAIsharedresponsibility.
AmazonWebServicesfocusesonprovidingthe
infrastructureforgenerativeAImodels,aswith
AmazonBedrock.Variousdegreesofcustomizationandownershiparepossible.Theclient’ssystemis
definedastheprovidedinfrastructure,andtheirpartofsharedresponsibilityincludesthesecurityofthemodels,data,andapplications.
GoogleCloudPlatform’s(GCP)approachfocusesontheinfrastructureandmodels,offeringVertexAIandtheModelGardentoempowercustomers.Customers
focusontheapplicationlayer,monitoring,andtheGenAIinterface,whileGCPhassharedresponsibilityfromthemodeldowntodataandinfrastructure.
WithMicrosoftAzure’sCo-pilot,theCSPtakes
ownershipofinfrastructure,model,application,and
everythinginbetween..Thecustomerfocusesondatasecurityandbusinesspurposes.Datainterfacesdefinetheirsystem,whilethemodels,infrastructure,and
applicationinterfacearetreatedmoreasblackboxes.
4|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|5
Establishing
asecurity
frameworkwithgovernance
PositionsonhowtoregulateGenAIvarywidely,
fromoutrightprohibitiontocompletelaissez-faire.Nosinglegovernmentorsupranationalpolitical
entitywillbeabletodictatehowGenAIproliferates.Nevertheless,enterprisesmustworkwithinlegal
andregulatorystructuresbasedontheirclients,geographies,andethics.
Toanticipatewhat’sexpectedingenerativeAIgovernance,enterprisesshouldconsiderthefollowing:
.ExistingandupcomingregulationsthatwillinfluenceAIuse
.Anenterprise’suniquerisktolerancesfortechnologyandregulations
.TeammembereducationonhowGenAIworks,itsinherentproblems,andriskssuchasdataleaksandtheorganization’sownpolicies
.AsecureGenAIreferencearchitecturedescribinghowtomanagerisks
Thereferencearchitecturemustaddresstherisksofvariousmodelsindiverseways.Afullproprietarysolution,includingGenAImodeldevelopmentandpre-training,meansanorganizationwillhavethe
abilityandobligationtoaddressitsspecificrisksend-to-end.
InthecaseofSoftware-as-a-ServicegenerativeAI,manyrisksneedtobeaddressedthroughcontractandthird-andfourth-partyriskmanagement.
OrganizationscanalsodeploymorethanoneGenAIsolutionwithdifferentarchitecturemodels,andhybridmodels.
Governancebodies-suchasaGenerativeAICenterofExcellence-areneededinenterprisestohelpshape
thesecureadoptionofGenAI.Theyhelpaccelerate
low-risk,high-impactbusinessexperimentswhile
enforcingappropriateoversightofhigh-riskplans.Bydevelopingrepeatable,enforceable,anddisseminatedguidelines,enterprisescanleverageGenAIsolutionsmorequicklyandsecurely.
Providerassumedresponsibility
SaaS
ExternalModel
PaaS
IaaS
Applications
Monitoring&Maintain
Models&Tools
Data
Infrastructure
M
Network
Communication
Storage
Compute
Figure2:SharedresponsibilitymodelsforvariouscloudproviderGenAIdeliverymodels
6|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|7
SecuringData
GenAIlackshumanfilterswhenitproducesdata:themachinesearchesthrougheverythingitcanaccess
andthenreproducesthisknowledgewithcompletecandorregardlessofsensitivity.Itis,therefore,
imperativetosetlimits.Todothis,enterprisesmust
inventorytheirdata:classifyit;implementcontrolsforquality,representativeness,integrity,andaccess;andcreaterepositoriesofauthorizeddataforGenAIapplications.
GenAI’sconsumptionofdatamakesdata
classificationevenmoreessentialtoadequately
protectanenterpriseandcustomers.Classification
allowstightercontrolofdatausedtotrain,specialize,andrefinemodels.Accesstoitsoutputcanbe
restrictedanddataleakprotectiontoolscanbe
implemented;oraresponsecanbelimitedusingasubsetofdatabasedonaright-to-knowrule.
Withathird-partyLLM,thereislimitedabilityto
build“native”guardrailsaroundinputsandoutputs.Likewise,theabilitytoimplementguardrailsinsidethelearningphasesofaGenerativeAdversarial
Network1islimitedwhenusingclosedmodelsinan
Data
1.Training
Themodelisbuiltwhich
encodestherealtionships,
patternsandsequences
withintrainingdataand
modelvalidationdata.
●
TrainedModel
●
3.EnsuringCorrectness
Thereisnoguranteeofreal-worldcorrectnessfromagenerativeAImodels,anditsometimes
hallucinates?ctionalresponse
2.Generation
Thetrainedmodelcanthengeneratenewoutputsliketheoriginaldataitwastrainedon
(Optional)
FineTuning
Thegenericfoundation
modelmightbe?ne-tuned
togiveitexposuretoa
specialistarea.
(Optional)Alignment
Modelmightbetweaked
toaligninmorewith
expectedhumanresponse
Figure3:DatalifecycleinsideagenerativeAIapplication
application.Itiscriticaltoconsiderwhetherdata
canbeinspectedandvalidated,andwhetherits
inputsandoutputscanbeobservedwhenchoosingcomponentsofasystem.
Amodel’soutputmustbesubjecttoverification
todetecthallucinations,maliciousreinforcement,
ordriftsfromexpectedbehaviorovertime.When
usingreal-timemodeloutput,suchaswithachatbot,theobservabilityofpastperformancetopreempt
unacceptableresponsesisimportant.Akeypointis
tounderstandthedatalifecycleanditssensitivity,ascapturedinFigure3.Datasecurityrequirementscanchangeoveritslifecycle,dependingonitsproximityto,orcominglingwithotherdata.
SuccessfullysecuringGenAIsolutionsisamulti-
disciplineapproachthatrequirespartnerships
betweencybersecurity,datagovernance,data
science,andlegalandcompliance,sincedisciplineddatamanagementisattheheartofachievingGenAIdatasecurity.
Dependencies
Data
Governance
Data
Sciences
Security
Legal&Compliance
Figure4:Multi-disciplineinteractionsnecessaryforGenAIsuccess
8|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|9
TrustedGen
AImodelsandtheiroutcomes
Itmaynotbepossibletogainaccesstoandthen
validatealldatasetsusedduringthelifecycleof
aGenAIsolution.Amodelsuchasthecommonly
usedLargeLanguageModel(LLM),multi-model
models,andtransformer-basedmodelsgeneratingoutcomesthroughuserpromptorAPIrequestscanfallintooneofthefollowingmodelcategories:
.Developedandinitiallytrainedbyanexternal
party(OpenAI’sChatGPT,forinstance)andused“asis”bytheenterprise
.Developedandinitiallytrainedbyanexternal
party,thenspecializedbytheenterprisetoa
specificdomain(i.e.,specialism)withanewdatasettoaddressspecificusecases
.DevelopedandtrainedbytheenterpriseentirelySupplychainsecurityandthird/fourth-partyrisk
managementarecrucialforthefirsttwocategories.
Itisevenmoreimportanttointegratesecuritycontrolssuchasmodelauditability,dataleakageprevention,hallucinationandbiasdetection(i.e.guardrails)intotheapplicationdevelopment
pipeline.
Dataquality
Therecurrentuseandprovenanceoftrainingdataisafocalpointwhenusingexternallysourcedmodels.Itscomposition,howoftenitchanges,andhowrecursionbetweencustomerprompt/responsepairingsand
reinforcementtrainingofthemodeloccursshouldbeclear.
Whendevelopingandtrainingaproprietarymodel(thirdcategoryabove),someriskscanbeamplifiedwhileothersaremitigated.Theneedtounderstanddata’sprovenanceandclassificationoftrainingdatawhilealsotestingforbiasandderogatoryresponsesfallsontheenterprise,eventhoughthosecanbe
differentdisciplines.Atthesametime,therisks
ofrecursivetrainingfromprompt/responsepairsarereducedastheinformationdoesn’tleavethelocalmodel.
Forallmodels,organizationsmustapplytheirownadditional,adaptablecontrols,suchas:
.Specificsecuritymonitoringrules
.Completelyoriginalmeasures,suchascontrolstodetectspecificnewattacksoruserbehaviors.
.Formultiandhybridarchitectures,APIsecurityandCI/CDsecure-by-designdomains
Thekeytoassuranceofdata’sintegrityisdue
diligenceonaprovider’ssecurity,privacycontrols,andcompliance.Theircommitmentsandresponsibilities
shouldbeclearlydefinedinanycontract.
10|GenerativeAI&CybersecurityGenerativeAI&Cybersecurity|11
Application
and
infrastructuremonitoring
anddelivery
ThefinalaspectofsecurityforGenAIisprotecting
applicationsfrombeingrenderedinoperativeor
unavailable.Thisrequiresdeployingsecuritycontrolswithinapplicationsandinfrastructure,covering
compute,endpoint,network,andstorage.
Thesamesecurityandcompliancehygieneappliedtoclassicsecuritymustbeappliedhere,especiallythosehandlingsensitivedata.Corporatesecurity
policiesandmandatorysecuritycontrolsovertheselayersareasimportantasever.
GenAIapplicationswillrequiresomenewsecuritycontrols,suchaspromptanalysis,andadaptationto
existingsecuritycontrols,suchasedgeprotection,tobeeffective.Buildingadequate,automated
governancearounddataclassificationandusageshouldbepartofanysecurityroadmap.
SoftwaresupplychainmanagementismoreimportantingenerativeAIapplicationdevelopment,e.g.,for
pinningdependencyversionsinmodeldevelopmenttoensuretrainingrunsdonotbecomecorrupted.Thisisimportantformonitoringanddeliverysinceitisa
partofthesoftwaredeliverylifecycle.Continuous
Integration(CI)andcontinuousdelivery(CD)throughaDevSecOpspipelineforapplicationdevelopment
canbeusedtosecuremodeldevelopment.Red
teaming2,anapplicationtotestforvulnerabilities,shouldincludetestingofanyprompts.Thisaimstostopmalicioususersfrom:
.Corruptingorrecoveringtrainingdata
.Manipulatingresultsforotherusers
.Performingdenialofserviceattacks
.Exfiltratingdata
AsgenerativeAIevolves,securityfunctionsnativetoGenAIwilltoo,aswilltheircapabilitiestointegratewithexternalsecuritysolutions.
12|GenerativeA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村80歲老人低保申請書范文(8篇)
- 漁業(yè)政策與法規(guī)研究-洞察分析
- 牙形石生物地理學(xué)-洞察分析
- 水資源節(jié)約型地產(chǎn)開發(fā)-洞察分析
- 新興技術(shù)教育投資-洞察分析
- 藥物干預(yù)反社會人格障礙機(jī)制-洞察分析
- 新能源車與城市可持續(xù)發(fā)展-洞察分析
- 藝術(shù)創(chuàng)作與社區(qū)文化傳承-洞察分析
- 文件結(jié)構(gòu)標(biāo)準(zhǔn)化-洞察分析
- 劇本殺消防的應(yīng)急預(yù)案范文(8篇)
- TDT 1083-2023 國土調(diào)查數(shù)據(jù)庫更新數(shù)據(jù)規(guī)范
- 手機(jī)攝影教程
- TD/T 1032-2011 基本農(nóng)田劃定技術(shù)規(guī)程(正式版)
- 人機(jī)工程設(shè)計(jì)智慧樹知到期末考試答案章節(jié)答案2024年蘭州理工大學(xué)
- 食品工廠蟲害控制管理規(guī)程
- 2024年社區(qū)工作者考試必背1000題題庫【含答案】
- 一年級口算天天練(打印版)
- 08水平四 七年級 田徑單元18課時(shí)計(jì)劃-《田徑快速起動加速跑》教案
- 信訪業(yè)務(wù)培訓(xùn)
- 中國古典舞的審美認(rèn)知與文化品格智慧樹知到期末考試答案2024年
- 小學(xué)氣象科普主題教案及反思
評論
0/150
提交評論