河南省輝縣市第一中學(xué)2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
河南省輝縣市第一中學(xué)2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
河南省輝縣市第一中學(xué)2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
河南省輝縣市第一中學(xué)2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
河南省輝縣市第一中學(xué)2025屆高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河南省輝縣市第一中學(xué)2025屆高三第二次聯(lián)考數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)復(fù)數(shù)滿足,則()A. B. C. D.2.如圖所示,已知雙曲線的右焦點(diǎn)為,雙曲線的右支上一點(diǎn),它關(guān)于原點(diǎn)的對稱點(diǎn)為,滿足,且,則雙曲線的離心率是().A. B. C. D.3.已知向量,,當(dāng)時,()A. B. C. D.4.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1285.在直角梯形中,,,,,點(diǎn)為上一點(diǎn),且,當(dāng)?shù)闹底畲髸r,()A. B.2 C. D.6.若平面向量,滿足,則的最大值為()A. B. C. D.7.?dāng)?shù)列滿足,且,,則()A. B.9 C. D.78.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度9.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個結(jié)論:①在上單調(diào)遞增;②③在上沒有零點(diǎn);④在上只有一個零點(diǎn).其中所有正確結(jié)論的編號是()A.②④ B.①③ C.②③ D.①②④10.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.411.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.12.如下的程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.15二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓C:1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點(diǎn)P(c,2c)作線段PF1,PF2分別交橢圓C于點(diǎn)A、B,若|PA|=|AF1|,則_____.14.在三棱錐中,,,兩兩垂直且,點(diǎn)為的外接球上任意一點(diǎn),則的最大值為______.15.的展開式中的常數(shù)項(xiàng)為__________.16.已知函數(shù),若關(guān)于x的方程有且只有兩個不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且以原點(diǎn)O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知動直線l過右焦點(diǎn)F,且與橢圓C交于A、B兩點(diǎn),已知Q點(diǎn)坐標(biāo)為,求的值.18.(12分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時,求的值;(2)當(dāng)時,求二面角的余弦值.19.(12分)如圖,三棱錐中,點(diǎn),分別為,的中點(diǎn),且平面平面.求證:平面;若,,求證:平面平面.20.(12分)某百貨商店今年春節(jié)期間舉行促銷活動,規(guī)定消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店經(jīng)理對春節(jié)前天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:123456758810141517(1)經(jīng)過進(jìn)一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(2)該商店規(guī)定:若抽中“一等獎”,可領(lǐng)取600元購物券;抽中“二等獎”可領(lǐng)取300元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為,獲得“二等獎”的概率為.現(xiàn)有張、王兩位先生參與了本次活動,且他們是否中獎相互獨(dú)立,求此二人所獲購物券總金額的分布列及數(shù)學(xué)期望.參考公式:,,,.21.(12分)在直角坐標(biāo)系中,曲線的標(biāo)準(zhǔn)方程為.以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線的直角坐標(biāo)方程;(2)若點(diǎn)在曲線上,點(diǎn)在直線上,求的最小值.22.(10分)已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長為,一個焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上的點(diǎn),且.證明:直線與圓相切;求面積的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)復(fù)數(shù)運(yùn)算,即可容易求得結(jié)果.【詳解】.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,屬基礎(chǔ)題.2、C【解析】

易得,,又,平方計算即可得到答案.【詳解】設(shè)雙曲線C的左焦點(diǎn)為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點(diǎn)睛】本題考查求雙曲線離心率的問題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.3、A【解析】

根據(jù)向量的坐標(biāo)運(yùn)算,求出,,即可求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算、誘導(dǎo)公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.4、C【解析】

根據(jù)給定的程序框圖,逐次計算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認(rèn)真審題,逐次計算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、B【解析】

由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進(jìn)而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點(diǎn)在線段上,設(shè),則,即,又因?yàn)樗裕?,?dāng)時,等號成立.所以.故選:B.【點(diǎn)睛】本題考查平面向量線性運(yùn)算中的加法運(yùn)算、向量共線定理,以及運(yùn)用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.6、C【解析】

可根據(jù)題意把要求的向量重新組合成已知向量的表達(dá),利用向量數(shù)量積的性質(zhì),化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點(diǎn)睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達(dá)是本題的關(guān)鍵點(diǎn).本題屬中檔題.7、A【解析】

先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì)和通項(xiàng)公式的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.8、D【解析】

通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,難度不大.9、A【解析】

先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點(diǎn)情況得解.【詳解】因?yàn)楹瘮?shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當(dāng)時,,且,所以在上只有一個零點(diǎn).所以正確結(jié)論的編號②④故選:A.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點(diǎn)問題,意在考查學(xué)生對這些知識的理解掌握水平.10、B【解析】

根據(jù)函數(shù)的奇偶性和單調(diào)性得到可行域,畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫出可行域和目標(biāo)函數(shù),,即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當(dāng)直線過點(diǎn),即時,有最小值為.故選:.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性和奇偶性,線性規(guī)劃問題,意在考查學(xué)生的綜合應(yīng)用能力,畫出圖像是解題的關(guān)鍵.11、D【解析】

先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡單題目.12、A【解析】

根據(jù)題意可知最后計算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計算的結(jié)果為的最大公約數(shù),按流程圖計算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點(diǎn)睛】本題考查的是利用更相減損術(shù)求兩個數(shù)的最大公約數(shù),難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點(diǎn)A為橢圓上頂點(diǎn),則有b=c,解出B的坐標(biāo)即可得到比值.【詳解】因?yàn)閨PA|=|AF1|,所以點(diǎn)A是線段PF1的中點(diǎn),又因?yàn)辄c(diǎn)O為線段F1F2的中點(diǎn),所以O(shè)A∥PF2,且|PF2|=2|OA|,因?yàn)辄c(diǎn)P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以O(shè)A⊥x軸,則點(diǎn)A為橢圓上頂點(diǎn),所以|OA|=b,則2b=2c,所以b=c,ac,設(shè)B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點(diǎn)睛】本題考查橢圓的基本性質(zhì),考查直線位置關(guān)系的判斷,方程思想,屬于中檔題.14、【解析】

先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運(yùn)算,將問題轉(zhuǎn)化為求球體表面一點(diǎn)到外心距離最大的問題,即可求得結(jié)果.【詳解】因?yàn)閮蓛纱怪鼻?,故三棱錐的外接球就是對應(yīng)棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點(diǎn),如下圖所示:容易知外接球半徑為.設(shè)線段的中點(diǎn)為,故可得,故當(dāng)取得最大值時,取得最大值.而當(dāng)在同一個大圓上,且,點(diǎn)與線段在球心的異側(cè)時,取得最大值,如圖所示:此時,故答案為:.【點(diǎn)睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運(yùn)算以及數(shù)量積運(yùn)算,屬綜合性困難題.15、31【解析】

由二項(xiàng)式定理及其展開式得通項(xiàng)公式得:因?yàn)榈恼归_式得通項(xiàng)為,則的展開式中的常數(shù)項(xiàng)為:,得解.【詳解】解:,則的展開式中的常數(shù)項(xiàng)為:.故答案為:31.【點(diǎn)睛】本題考查二項(xiàng)式定理及其展開式的通項(xiàng)公式,求某項(xiàng)的導(dǎo)數(shù),考查計算能力.16、【解析】

畫出函數(shù)的圖象,再畫的圖象,求出一個交點(diǎn)時的的值,然后平行移動可得有兩個交點(diǎn)時的的范圍.【詳解】函數(shù)的圖象如圖所示:因?yàn)榉匠逃星抑挥袃蓚€不相等的實(shí)數(shù)根,所以圖象與直線有且只有兩個交點(diǎn)即可,當(dāng)過點(diǎn)時兩個函數(shù)有一個交點(diǎn),即時,與函數(shù)有一個交點(diǎn),由圖象可知,直線向下平移后有兩個交點(diǎn),可得,故答案為:.【點(diǎn)睛】本題主要考查了方程的跟與函數(shù)的圖象交點(diǎn)的轉(zhuǎn)化,數(shù)形結(jié)合的思想,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)根據(jù)橢圓的離心率為,得到,根據(jù)直線與圓的位置關(guān)系,得到原心到直線的距離等于半徑,得到,從而求得,進(jìn)而求得橢圓的方程;(2)分直線的斜率存在是否為0與不存在三種情況討論,寫出直線的方程,與橢圓方程聯(lián)立,利用韋達(dá)定理,向量的數(shù)量積,結(jié)合已知條件求得結(jié)果.【詳解】(1)由離心率為,可得,,且以原點(diǎn)O為圓心,橢圓C的長半軸長為半徑的圓的方程為,因與直線相切,則有,即,,,故而橢圓方程為.(2)①當(dāng)直線l的斜率不存在時,,,由于;②當(dāng)直線l的斜率為0時,,,則;③當(dāng)直線l的斜率不為0時,設(shè)直線l的方程為,,,由及,得,有,∴,,,,∴,綜上所述:.【點(diǎn)睛】該題考查直線與圓錐曲線的綜合問題,橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,求向量數(shù)量積,在解題的過程中,注意對直線方程的分類討論,屬于中檔題目.18、(1);(2).【解析】

(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點(diǎn),在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個法向量,由得,取,則因?yàn)槠矫娴囊粋€法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個法向量為,綜上,二面角的余弦值為.【點(diǎn)睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.19、證明見解析;證明見解析.【解析】

利用線面平行的判定定理求證即可;為中點(diǎn),為中點(diǎn),可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.【詳解】解:證明:為中點(diǎn),為中點(diǎn),,又平面,平面,平面;證明:為中點(diǎn),為中點(diǎn),,又,,則,故為直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【點(diǎn)睛】本題考查線面平行和面面垂直的判定定理的應(yīng)用,屬于基礎(chǔ)題.20、(1);(2)見解析【解析】試題分析:(I)由題意可得,,則,,關(guān)于的線性回歸方程為.(II)由題意可知二人所獲購物券總金額的可能取值有、、、、元,它們所對應(yīng)的概率分別為:,,,.據(jù)此可得分布列,計算相應(yīng)的數(shù)學(xué)期望為元.試題解析:(I)依題意:,,,,,,則關(guān)于的線性回歸方程為.(II)二人所獲購物券總金額的可能取值有、、、、元,它們所對應(yīng)的概率分別為:,,,,.所以,總金額的分布列如下表:03006009001200總金額的數(shù)學(xué)期望為元.21、(1)(2)【解析】

(1)直接利用極坐標(biāo)公式計算得到答案(2)設(shè),,根據(jù)三角函數(shù)的有界性得到答案.【詳解】(1)因?yàn)?,所以,因?yàn)樗灾本€的直角坐標(biāo)方程為.(2)由題意可設(shè),則點(diǎn)到直線的距離.因?yàn)?,所以,因?yàn)?,故的最小值?【點(diǎn)睛】本題考查了極坐標(biāo)方程,參數(shù)方程,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.22、證明見解析;1.【解析】

由題意可得橢圓的方程為,由點(diǎn)在直線上,且知的斜率必定存在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論