版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆新疆阿勒泰第二高級(jí)中學(xué)高考適應(yīng)性考試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.甲乙兩人有三個(gè)不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個(gè)學(xué)習(xí)小組,則兩人參加同一個(gè)小組的概率為()A.B.C.D.2.某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線(xiàn)方程為,若計(jì)劃維修費(fèi)用超過(guò)15萬(wàn)元將該設(shè)備報(bào)廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年3.設(shè)復(fù)數(shù)滿(mǎn)足為虛數(shù)單位),則()A. B. C. D.4.已知集合,,則等于()A. B. C. D.5.是平面上的一定點(diǎn),是平面上不共線(xiàn)的三點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,,則動(dòng)點(diǎn)的軌跡一定經(jīng)過(guò)的()A.重心 B.垂心 C.外心 D.內(nèi)心6.中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅督造的一種標(biāo)準(zhǔn)量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當(dāng)該量器口密閉時(shí)其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.47.如圖是一個(gè)算法流程圖,則輸出的結(jié)果是()A. B. C. D.8.已知復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.函數(shù)fxA. B.C. D.10.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.11.在邊長(zhǎng)為1的等邊三角形中,點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),則()A. B. C. D.12.已知函數(shù)滿(mǎn)足:當(dāng)時(shí),,且對(duì)任意,都有,則()A.0 B.1 C.-1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓柱的兩個(gè)底面的圓周在同一個(gè)球的球面上,圓柱的高和球半徑均為2,則該圓柱的底面半徑為_(kāi)_________.14.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_(kāi)______.15.如圖所示,點(diǎn),B均在拋物線(xiàn)上,等腰直角的斜邊為BC,點(diǎn)C在x軸的正半軸上,則點(diǎn)B的坐標(biāo)是________.16.設(shè)向量,,且,則_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知頂點(diǎn)是坐標(biāo)原點(diǎn)的拋物線(xiàn)的焦點(diǎn)在軸正半軸上,圓心在直線(xiàn)上的圓與軸相切,且關(guān)于點(diǎn)對(duì)稱(chēng).(1)求和的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線(xiàn)與交于,與交于,求證:.18.(12分)已知函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對(duì)于任意,.19.(12分)如圖,設(shè)A是由個(gè)實(shí)數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實(shí)數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請(qǐng)寫(xiě)出一個(gè)AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說(shuō)明理由;(Ⅲ)給定正整數(shù)n,對(duì)于所有的AS(n,n),求l(A)的取值集合.20.(12分)在直角坐標(biāo)系中,曲線(xiàn)的標(biāo)準(zhǔn)方程為.以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.(1)求直線(xiàn)的直角坐標(biāo)方程;(2)若點(diǎn)在曲線(xiàn)上,點(diǎn)在直線(xiàn)上,求的最小值.21.(12分)已知三棱柱中,,是的中點(diǎn),,.(1)求證:;(2)若側(cè)面為正方形,求直線(xiàn)與平面所成角的正弦值.22.(10分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】依題意,基本事件的總數(shù)有種,兩個(gè)人參加同一個(gè)小組,方法數(shù)有種,故概率為.2、D【解析】
根據(jù)樣本中心點(diǎn)在回歸直線(xiàn)上,求出,求解,即可求出答案.【詳解】依題意在回歸直線(xiàn)上,,由,估計(jì)第年維修費(fèi)用超過(guò)15萬(wàn)元.故選:D.【點(diǎn)睛】本題考查回歸直線(xiàn)過(guò)樣本中心點(diǎn)、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.3、B【解析】
易得,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法、除法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.4、B【解析】
解不等式確定集合,然后由補(bǔ)集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點(diǎn)睛】本題考查集合的綜合運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.5、B【解析】
解出,計(jì)算并化簡(jiǎn)可得出結(jié)論.【詳解】λ(),∴,∴,即點(diǎn)P在BC邊的高上,即點(diǎn)P的軌跡經(jīng)過(guò)△ABC的垂心.故選B.【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算在幾何中的應(yīng)用,根據(jù)條件中的角計(jì)算是關(guān)鍵.6、D【解析】
根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【詳解】由圖可知,該幾何體是由一個(gè)長(zhǎng)寬高分別為和一個(gè)底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點(diǎn)睛】本題考查由三視圖還原幾何體,以及圓柱和長(zhǎng)方體表面積的求解,屬綜合基礎(chǔ)題.7、A【解析】
執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿(mǎn)足判斷條件,;第2次循環(huán):滿(mǎn)足判斷條件,;第3次循環(huán):滿(mǎn)足判斷條件,;不滿(mǎn)足判斷條件,輸出計(jì)算結(jié)果,故選A.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計(jì)算與輸出,其中解答中執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.8、A【解析】
利用復(fù)數(shù)除法運(yùn)算化簡(jiǎn),由此求得對(duì)應(yīng)點(diǎn)所在象限.【詳解】依題意,對(duì)應(yīng)點(diǎn)為,在第一象限.故選A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo)所在象限,屬于基礎(chǔ)題.9、A【解析】
由f12=e-14>0排除選項(xiàng)D;【詳解】由f12=e-14>0,可排除選項(xiàng)D,f-1=-e【點(diǎn)睛】本題通過(guò)對(duì)多個(gè)圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類(lèi)題型也是近年高考常見(jiàn)的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)、考查知識(shí)點(diǎn)較多,但是并不是無(wú)路可循.解答這類(lèi)題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及x→010、A【解析】
利用已知條件畫(huà)出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點(diǎn)睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.11、C【解析】
根據(jù)平面向量基本定理,用來(lái)表示,然后利用數(shù)量積公式,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),所以又所以則故選:C【點(diǎn)睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細(xì)心觀察,屬基礎(chǔ)題.12、C【解析】
由題意可知,代入函數(shù)表達(dá)式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點(diǎn)睛】本題考查了分段函數(shù)和函數(shù)周期的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由圓柱外接球的性質(zhì),即可求得結(jié)果.【詳解】解:由于圓柱的高和球半徑均為2,,則球心到圓柱底面的距離為1,設(shè)圓柱底面半徑為,由已知有,∴,即圓柱的底面半徑為.故答案為:.【點(diǎn)睛】本題考查由圓柱的外接球的性質(zhì)求圓柱底面半徑,屬于基礎(chǔ)題.14、【解析】
算法的功能是求的值,根據(jù)輸出的值,分別求出當(dāng)時(shí)和當(dāng)時(shí)的值即可得解.【詳解】解:由程序語(yǔ)句知:算法的功能是求的值,當(dāng)時(shí),,可得:,或(舍去);當(dāng)時(shí),,可得:(舍去).綜上的值為:.故答案為:.【點(diǎn)睛】本題考查了選擇結(jié)構(gòu)的程序語(yǔ)句,根據(jù)語(yǔ)句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.15、【解析】
設(shè)出兩點(diǎn)的坐標(biāo),結(jié)合拋物線(xiàn)方程、兩條直線(xiàn)垂直的條件以及兩點(diǎn)間的距離公式列方程,解方程求得的坐標(biāo).【詳解】設(shè),由于在拋物線(xiàn)上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點(diǎn)睛】本題考查拋物線(xiàn)的方程和運(yùn)用,考查方程思想和運(yùn)算能力,屬于中檔題.16、【解析】
根據(jù)向量的數(shù)量積的計(jì)算,以及向量的平方,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:且由所以故答案為:【點(diǎn)睛】本題考查向量的坐標(biāo)計(jì)算,主要考查計(jì)算,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)證明見(jiàn)解析.【解析】分析:(1)設(shè)的標(biāo)準(zhǔn)方程為,由題意可設(shè).結(jié)合中點(diǎn)坐標(biāo)公式計(jì)算可得的標(biāo)準(zhǔn)方程為.半徑,則的標(biāo)準(zhǔn)方程為.(2)設(shè)的斜率為,則其方程為,由弦長(zhǎng)公式可得.聯(lián)立直線(xiàn)與拋物線(xiàn)的方程有.設(shè),利用韋達(dá)定理結(jié)合弦長(zhǎng)公式可得.則.即.詳解:(1)設(shè)的標(biāo)準(zhǔn)方程為,則.已知在直線(xiàn)上,故可設(shè).因?yàn)殛P(guān)于對(duì)稱(chēng),所以解得所以的標(biāo)準(zhǔn)方程為.因?yàn)榕c軸相切,故半徑,所以的標(biāo)準(zhǔn)方程為.(2)設(shè)的斜率為,那么其方程為,則到的距離,所以.由消去并整理得:.設(shè),則,那么.所以.所以,即.點(diǎn)睛:(1)直線(xiàn)與拋物線(xiàn)的位置關(guān)系和直線(xiàn)與橢圓、雙曲線(xiàn)的位置關(guān)系類(lèi)似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線(xiàn)與拋物線(xiàn)的弦長(zhǎng)問(wèn)題,要注意直線(xiàn)是否過(guò)拋物線(xiàn)的焦點(diǎn),若過(guò)拋物線(xiàn)的焦點(diǎn),可直接使用公式|AB|=x1+x2+p,若不過(guò)焦點(diǎn),則必須用一般弦長(zhǎng)公式.18、(Ⅰ),(Ⅱ)見(jiàn)解析【解析】
(1)根據(jù)導(dǎo)數(shù)的運(yùn)算法則,求出函數(shù)的導(dǎo)數(shù),利用切線(xiàn)方程求出切線(xiàn)的斜率及切點(diǎn),利用函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值為曲線(xiàn)切線(xiàn)的斜率及切點(diǎn)也在曲線(xiàn)上,列出方程組,求出,值;(2)首先將不等式轉(zhuǎn)化為函數(shù),即將不等式右邊式子左移,得,構(gòu)造函數(shù)并判斷其符號(hào),這里應(yīng)注意的取值范圍,從而證明不等式.【詳解】解:(1)由于直線(xiàn)的斜率為,且過(guò)點(diǎn),故即解得,.(2)由(1)知,所以.考慮函數(shù),,則.而,故當(dāng)時(shí),,所以,即.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求切線(xiàn)的斜率,利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性、和最值問(wèn)題,以及不等式證明問(wèn)題,考查了分析及解決問(wèn)題的能力,其中,不等式問(wèn)題中結(jié)合構(gòu)造函數(shù)實(shí)現(xiàn)正確轉(zhuǎn)換為最大值和最小值問(wèn)題是關(guān)鍵.19、(Ⅰ)答案見(jiàn)解析;(Ⅱ)不存在,理由見(jiàn)解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都為-1,其余的都取1,即滿(mǎn)足題意;(Ⅱ)用反證法證明:假設(shè)存在,得出矛盾,從而證明結(jié)論;(Ⅲ)通過(guò)分析正確得出l(A)的表達(dá)式,以及從A0如何得到A1,A2……,以此類(lèi)推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數(shù)表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因?yàn)椋?,所以,?..,,,,...,這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1.令.一方面,由于這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1,從而①,另一方面,表示數(shù)表中所有元素之積(記這81個(gè)實(shí)數(shù)之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個(gè)實(shí)數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個(gè)數(shù),由③知,上述2n個(gè)實(shí)數(shù)中,-1的個(gè)數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個(gè)數(shù)為2n-2k,所以,對(duì)數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類(lèi)推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿(mǎn)足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【點(diǎn)睛】本題為數(shù)列的創(chuàng)新應(yīng)用題,考查數(shù)學(xué)分析與思考能力及推理求解能力,解題關(guān)鍵是讀懂題意,根據(jù)引入的概念與性質(zhì)進(jìn)行推理求解,屬于較難題.20、(1)(2)【解析】
(1)直接利用極坐標(biāo)公式計(jì)算得到答案(2)設(shè),,根據(jù)三角函數(shù)的有界性得到答案.【詳解】(1)因?yàn)椋?,因?yàn)樗灾本€(xiàn)的直角坐標(biāo)方程為.(2)由題意可設(shè),則點(diǎn)到直線(xiàn)的距離.因?yàn)椋?,因?yàn)?,故的最小值?【點(diǎn)睛】本題考查了極坐標(biāo)方程,參數(shù)方程,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.21、(1)證明見(jiàn)解析(2)【解析】
(1)取的中點(diǎn),連接,,證明平面得出,再得出;(2)建立空間坐標(biāo)系,求出平面的法向量,計(jì)算,即可得出答案.【詳解】(1)證明:取的中點(diǎn),連接,,,,,,,故,又,,平面,平面,,,分別是,的中點(diǎn),,.(2)解:四邊形是正方形,,又,,平面,平面,在平面內(nèi)作直線(xiàn)的垂線(xiàn),以為原點(diǎn),以,,為所在直線(xiàn)為坐標(biāo)軸建立空間直角坐標(biāo)系,則,0,,,1,,,2,,,0,,,1,,,2,,,1,,設(shè)平面的法向量為,,,則,即,令可得:,,,,.直線(xiàn)與平面所成角的正弦值為,.【點(diǎn)睛】本題主要考查了線(xiàn)面垂直的判定與性質(zhì),考查空間向量與空間角的計(jì)算,屬于中檔題.22、(Ⅰ)極大值為:,無(wú)極小值;(Ⅱ)見(jiàn)解析.【解析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024上海市安全員-C3證作業(yè)考試題及答案
- 【大學(xué)課件】模擬電子技術(shù)實(shí)驗(yàn)前導(dǎo)
- 2025屆福建省三明市普通高中高三下學(xué)期一模考試英語(yǔ)試題含解析
- 陜西省西安市高新一中2025屆高三最后一模英語(yǔ)試題含解析
- 云南省西疇縣第二中學(xué)2025屆高三第二次模擬考試英語(yǔ)試卷含解析
- 2025屆重慶市南坪中學(xué)高三最后一模數(shù)學(xué)試題含解析
- 9.1《念奴嬌?赤壁懷古》課件 2024-2025學(xué)年統(tǒng)編版高中語(yǔ)文必修上冊(cè)
- 河南省三門(mén)峽市2025屆高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析
- 《solidworks 機(jī)械設(shè)計(jì)實(shí)例教程》 課件 任務(wù)3.1 法蘭盤(pán)的設(shè)計(jì)
- 2025屆山東省濟(jì)南市山東師范大學(xué)附中高考英語(yǔ)倒計(jì)時(shí)模擬卷含解析
- 2024年銷(xiāo)售年終個(gè)人總結(jié)
- 2024年度師德師風(fēng)工作計(jì)劃
- 工程質(zhì)量管理制度
- 初中音樂(lè)教師個(gè)人成長(zhǎng)專(zhuān)業(yè)發(fā)展計(jì)劃
- GB/T 44705-2024道路運(yùn)輸液體危險(xiǎn)貨物罐式車(chē)輛罐體清洗要求
- 護(hù)理類(lèi)醫(yī)療設(shè)備采購(gòu) 投標(biāo)方案(技術(shù)方案)
- 2024年法律職業(yè)資格考試主觀題試卷及答案指導(dǎo)
- 電影作品解讀-世界科幻電影智慧樹(shù)知到期末考試答案章節(jié)答案2024年成都錦城學(xué)院
- 開(kāi)票稅點(diǎn)自動(dòng)計(jì)算器
- 建筑用砂石料采購(gòu) 投標(biāo)方案(技術(shù)方案)
- 小學(xué)四年級(jí)上冊(cè)勞動(dòng)期末試卷
評(píng)論
0/150
提交評(píng)論