陜西鐵路工程職業(yè)技術(shù)學(xué)院《平面廣告》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
陜西鐵路工程職業(yè)技術(shù)學(xué)院《平面廣告》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
陜西鐵路工程職業(yè)技術(shù)學(xué)院《平面廣告》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
陜西鐵路工程職業(yè)技術(shù)學(xué)院《平面廣告》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)陜西鐵路工程職業(yè)技術(shù)學(xué)院

《平面廣告》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺(jué)中的視頻分析需要對(duì)連續(xù)的圖像幀進(jìn)行處理和理解。假設(shè)要分析一段監(jiān)控視頻中的人群行為,包括行走方向、聚集和分散等。以下哪種視頻分析技術(shù)在處理這種復(fù)雜的群體行為時(shí)最為有效?()A.幀間差分法B.背景減除法C.光流法結(jié)合軌跡分析D.深度學(xué)習(xí)的行為識(shí)別模型2、計(jì)算機(jī)視覺(jué)中的動(dòng)作識(shí)別是一個(gè)具有挑戰(zhàn)性的任務(wù)。假設(shè)要識(shí)別一段體育比賽視頻中的運(yùn)動(dòng)員動(dòng)作,以下關(guān)于特征選擇的方法,哪一項(xiàng)是不太可行的?()A.提取運(yùn)動(dòng)員的身體輪廓和關(guān)節(jié)位置作為特征B.僅使用視頻的音頻信息來(lái)判斷運(yùn)動(dòng)員的動(dòng)作C.計(jì)算視頻幀之間的光流變化作為動(dòng)作特征D.結(jié)合空間和時(shí)間維度的特征來(lái)描述動(dòng)作3、在計(jì)算機(jī)視覺(jué)中,目標(biāo)檢測(cè)是一項(xiàng)關(guān)鍵任務(wù)。假設(shè)要開(kāi)發(fā)一個(gè)能夠在復(fù)雜的城市交通場(chǎng)景中準(zhǔn)確檢測(cè)出各種車(chē)輛類(lèi)型的系統(tǒng),需要考慮車(chē)輛的不同尺寸、形狀和姿態(tài),以及光照、陰影和遮擋等因素的影響。以下哪種目標(biāo)檢測(cè)算法在處理這種復(fù)雜場(chǎng)景時(shí)具有較好的性能和魯棒性?()A.R-CNNB.FastR-CNNC.FasterR-CNND.YOLO4、假設(shè)要構(gòu)建一個(gè)能夠?qū)?shū)畫(huà)作品進(jìn)行真?zhèn)舞b定的計(jì)算機(jī)視覺(jué)系統(tǒng),需要對(duì)作品的筆觸、線條和風(fēng)格等特征進(jìn)行分析。以下哪種技術(shù)在書(shū)畫(huà)鑒定中可能具有應(yīng)用前景?()A.筆跡分析B.風(fēng)格遷移C.圖像風(fēng)格分析D.以上都是5、計(jì)算機(jī)視覺(jué)中的光流計(jì)算用于估計(jì)圖像中像素的運(yùn)動(dòng)。假設(shè)要分析一段視頻中物體的運(yùn)動(dòng)速度和方向。以下關(guān)于光流計(jì)算的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)比較連續(xù)幀之間的像素差異來(lái)計(jì)算光流B.光流計(jì)算能夠?yàn)橐曨l中的目標(biāo)跟蹤和行為分析提供重要信息C.無(wú)論視頻的幀率和分辨率如何,光流計(jì)算都能準(zhǔn)確地估計(jì)像素運(yùn)動(dòng)D.深度學(xué)習(xí)方法也被應(yīng)用于光流計(jì)算,提高了計(jì)算的準(zhǔn)確性和效率6、計(jì)算機(jī)視覺(jué)在智能零售中的應(yīng)用可以改善購(gòu)物體驗(yàn)和提高運(yùn)營(yíng)效率。假設(shè)一個(gè)超市需要通過(guò)計(jì)算機(jī)視覺(jué)實(shí)現(xiàn)自動(dòng)結(jié)賬和庫(kù)存管理。以下關(guān)于計(jì)算機(jī)視覺(jué)在智能零售中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)商品識(shí)別技術(shù)自動(dòng)識(shí)別顧客購(gòu)買(mǎi)的商品,實(shí)現(xiàn)快速結(jié)賬B.能夠?qū)崟r(shí)監(jiān)測(cè)貨架上商品的庫(kù)存水平,及時(shí)提醒補(bǔ)貨C.計(jì)算機(jī)視覺(jué)系統(tǒng)能夠準(zhǔn)確識(shí)別所有商品的包裝和標(biāo)簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內(nèi)的行為和偏好,為營(yíng)銷(xiāo)策略提供數(shù)據(jù)支持7、人臉識(shí)別是計(jì)算機(jī)視覺(jué)的一個(gè)重要應(yīng)用。假設(shè)一個(gè)公司使用人臉識(shí)別系統(tǒng)進(jìn)行員工考勤。以下關(guān)于人臉識(shí)別技術(shù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.它可以通過(guò)提取面部特征,如眼睛、鼻子和嘴巴的形狀和位置,來(lái)進(jìn)行身份識(shí)別B.能夠適應(yīng)不同的表情、姿態(tài)和光照變化,保持較高的識(shí)別準(zhǔn)確率C.人臉識(shí)別系統(tǒng)的安全性極高,不存在被欺騙或誤識(shí)別的可能性D.深度學(xué)習(xí)模型在人臉識(shí)別中表現(xiàn)出色,大大提高了識(shí)別性能8、在計(jì)算機(jī)視覺(jué)的視頻分析中,需要處理連續(xù)的圖像幀。假設(shè)要分析一段監(jiān)控視頻中的人員行為,以下關(guān)于視頻分析方法的描述,哪一項(xiàng)是不正確的?()A.光流法可以用于計(jì)算相鄰幀之間的像素運(yùn)動(dòng),從而跟蹤物體的運(yùn)動(dòng)軌跡B.可以通過(guò)對(duì)視頻幀進(jìn)行分類(lèi)和檢測(cè),來(lái)識(shí)別和分析人員的行為模式C.視頻分析需要考慮時(shí)間維度上的信息,不僅僅是單個(gè)圖像幀的特征D.視頻分析只適用于簡(jiǎn)單的場(chǎng)景和行為,對(duì)于復(fù)雜的多人交互場(chǎng)景無(wú)法進(jìn)行有效的分析9、對(duì)于視頻中的異常檢測(cè)任務(wù),假設(shè)要在一段監(jiān)控視頻中檢測(cè)出異常事件,如闖入、打斗等。以下哪種方法可能更有助于準(zhǔn)確檢測(cè)異常?()A.建立正常行為模型,對(duì)比檢測(cè)異常B.只關(guān)注視頻中的顯著運(yùn)動(dòng)區(qū)域C.隨機(jī)判斷視頻中的幀是否異常D.不進(jìn)行異常檢測(cè),直接忽略異常事件10、在計(jì)算機(jī)視覺(jué)的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度不同的同一物體的圖像進(jìn)行對(duì)齊。以下關(guān)于特征匹配的方法,哪一項(xiàng)是不太可靠的?()A.使用SIFT(Scale-InvariantFeatureTransform)特征進(jìn)行匹配B.基于像素值的直接比較進(jìn)行匹配C.利用SURF(SpeededUpRobustFeatures)特征進(jìn)行匹配D.通過(guò)ORB(OrientedFASTandRotatedBRIEF)特征進(jìn)行匹配11、在計(jì)算機(jī)視覺(jué)的場(chǎng)景理解任務(wù)中,需要理解整個(gè)圖像的語(yǔ)義信息。假設(shè)要分析一張城市街道的圖像中包含的物體和它們之間的關(guān)系,以下關(guān)于場(chǎng)景理解方法的描述,正確的是:()A.單獨(dú)對(duì)圖像中的每個(gè)物體進(jìn)行識(shí)別和分類(lèi)就能實(shí)現(xiàn)場(chǎng)景理解B.忽略圖像中的上下文信息和空間布局對(duì)場(chǎng)景理解沒(méi)有影響C.利用深度學(xué)習(xí)中的語(yǔ)義分割和圖模型可以更好地理解場(chǎng)景的結(jié)構(gòu)和語(yǔ)義關(guān)系D.場(chǎng)景理解只適用于簡(jiǎn)單的室內(nèi)場(chǎng)景,對(duì)于復(fù)雜的戶外場(chǎng)景無(wú)法處理12、在計(jì)算機(jī)視覺(jué)的三維重建中,從多幅二維圖像恢復(fù)物體的三維結(jié)構(gòu)。假設(shè)要對(duì)一個(gè)古建筑進(jìn)行三維重建,以下關(guān)于三維重建方法的描述,哪一項(xiàng)是不正確的?()A.基于立體視覺(jué)的方法通過(guò)匹配不同視角下的圖像特征點(diǎn)來(lái)計(jì)算深度信息,實(shí)現(xiàn)三維重建B.運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(SfM)算法可以從一系列無(wú)序的圖像中重建場(chǎng)景的三維結(jié)構(gòu)C.激光掃描技術(shù)能夠直接獲取物體表面的三維點(diǎn)云數(shù)據(jù),是一種高精度的三維重建方法D.三維重建的結(jié)果只取決于輸入的圖像質(zhì)量,與重建算法的選擇無(wú)關(guān)13、計(jì)算機(jī)視覺(jué)中的動(dòng)作識(shí)別是對(duì)視頻中的人體動(dòng)作進(jìn)行分類(lèi)和理解。假設(shè)我們要分析一段體育比賽的視頻,識(shí)別其中運(yùn)動(dòng)員的各種動(dòng)作,以下哪種方法能夠有效地捕捉動(dòng)作的時(shí)空特征?()A.基于手工特征和分類(lèi)器的方法B.基于深度學(xué)習(xí)的時(shí)空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法14、在計(jì)算機(jī)視覺(jué)的行人重識(shí)別任務(wù)中,即在不同攝像頭拍攝的圖像中識(shí)別出同一個(gè)行人,假設(shè)行人的姿態(tài)和服裝發(fā)生了較大變化,以下哪種特征可能具有更強(qiáng)的魯棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于顏色特征的描述D.基于形狀特征的描述15、計(jì)算機(jī)視覺(jué)中,以下哪種技術(shù)常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是16、當(dāng)利用計(jì)算機(jī)視覺(jué)進(jìn)行圖像分類(lèi)任務(wù),例如區(qū)分不同種類(lèi)的動(dòng)物圖片,為了提高模型的泛化能力和防止過(guò)擬合,以下哪種技術(shù)可能是有效的?()A.數(shù)據(jù)增強(qiáng)B.正則化C.模型融合D.以上都是17、在計(jì)算機(jī)視覺(jué)的視頻分析中,假設(shè)要對(duì)一段監(jiān)控視頻中的異常行為進(jìn)行檢測(cè)。以下關(guān)于特征提取的方法,哪一項(xiàng)是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級(jí)特征B.利用光流信息來(lái)捕捉物體的運(yùn)動(dòng)特征C.僅分析視頻的音頻信息,忽略圖像內(nèi)容D.結(jié)合時(shí)空特征,同時(shí)考慮空間和時(shí)間維度的信息18、計(jì)算機(jī)視覺(jué)在無(wú)人駕駛飛行器(UAV)中的應(yīng)用可以實(shí)現(xiàn)自主導(dǎo)航和環(huán)境感知。假設(shè)一個(gè)UAV需要在復(fù)雜的環(huán)境中飛行并避開(kāi)障礙物。以下關(guān)于計(jì)算機(jī)視覺(jué)在UAV中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)視覺(jué)傳感器獲取周?chē)h(huán)境的信息,包括地形、建筑物和其他障礙物B.能夠?qū)崟r(shí)分析圖像,計(jì)算與障礙物的距離和相對(duì)速度,為飛行決策提供依據(jù)C.計(jì)算機(jī)視覺(jué)在UAV中的應(yīng)用完全不需要與其他傳感器(如慣性測(cè)量單元)的數(shù)據(jù)融合D.可以利用深度學(xué)習(xí)算法進(jìn)行端到端的飛行控制,實(shí)現(xiàn)自主飛行19、在計(jì)算機(jī)視覺(jué)的應(yīng)用于農(nóng)業(yè)領(lǐng)域,例如作物監(jiān)測(cè)和病蟲(chóng)害檢測(cè),需要對(duì)大量的田間圖像進(jìn)行分析。假設(shè)我們要檢測(cè)農(nóng)作物葉片上的病蟲(chóng)害癥狀,以下哪種技術(shù)能夠?qū)崿F(xiàn)快速、準(zhǔn)確的檢測(cè),并且適應(yīng)不同的生長(zhǎng)階段和環(huán)境條件?()A.基于傳統(tǒng)圖像分割和特征提取的方法B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)和分類(lèi)算法,針對(duì)病蟲(chóng)害特征訓(xùn)練C.基于光譜分析和顏色特征的方法D.基于機(jī)器視覺(jué)和模式識(shí)別的方法20、計(jì)算機(jī)視覺(jué)在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中的應(yīng)用可以提供更沉浸式的體驗(yàn)。假設(shè)要在VR環(huán)境中實(shí)時(shí)跟蹤用戶的頭部運(yùn)動(dòng)并相應(yīng)地更新場(chǎng)景,以下關(guān)于VR/AR計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.簡(jiǎn)單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運(yùn)動(dòng)跟蹤需求B.計(jì)算機(jī)視覺(jué)在VR/AR中的應(yīng)用主要關(guān)注圖像生成,而不是跟蹤和定位C.結(jié)合視覺(jué)特征提取和深度學(xué)習(xí)的頭部運(yùn)動(dòng)跟蹤算法可以實(shí)現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對(duì)計(jì)算機(jī)視覺(jué)算法的性能沒(méi)有影響21、計(jì)算機(jī)視覺(jué)中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)要估計(jì)一段視頻中物體的運(yùn)動(dòng)速度和方向,以下關(guān)于光流估計(jì)方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計(jì)方法在復(fù)雜場(chǎng)景中能夠準(zhǔn)確計(jì)算光流B.深度學(xué)習(xí)中的光流估計(jì)網(wǎng)絡(luò)不需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練C.光流估計(jì)的結(jié)果不受圖像噪聲和模糊的影響D.結(jié)合時(shí)空信息的深度學(xué)習(xí)光流估計(jì)方法能夠提高估計(jì)的準(zhǔn)確性和魯棒性22、在計(jì)算機(jī)視覺(jué)的目標(biāo)跟蹤任務(wù)中,需要持續(xù)跟蹤一個(gè)或多個(gè)運(yùn)動(dòng)目標(biāo)。假設(shè)要跟蹤一個(gè)在操場(chǎng)上跑步的人。以下關(guān)于目標(biāo)跟蹤算法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標(biāo)的相似特征來(lái)實(shí)現(xiàn)跟蹤B.深度學(xué)習(xí)中的相關(guān)濾波算法能夠快速準(zhǔn)確地跟蹤目標(biāo),適應(yīng)目標(biāo)的外觀變化C.目標(biāo)跟蹤算法能夠在目標(biāo)被遮擋或短暫消失后,仍然準(zhǔn)確地恢復(fù)跟蹤D.無(wú)論目標(biāo)的運(yùn)動(dòng)速度和軌跡如何復(fù)雜,目標(biāo)跟蹤算法都能完美地跟蹤23、在計(jì)算機(jī)視覺(jué)的圖像檢索任務(wù)中,假設(shè)要從海量的圖像庫(kù)中快速找到與給定圖像相似的圖像。以下關(guān)于圖像特征表示的選擇,哪一項(xiàng)是需要重點(diǎn)考慮的?()A.選擇具有高維度的特征向量,包含豐富的圖像信息B.采用低維度但具有區(qū)分性的特征表示,提高檢索效率C.忽略特征的維度和區(qū)分性,隨機(jī)選擇一種特征表示D.只使用圖像的顏色特征,忽略形狀和紋理等特征24、計(jì)算機(jī)視覺(jué)在體育賽事分析中的應(yīng)用可以提供更多的數(shù)據(jù)和見(jiàn)解。假設(shè)要分析一場(chǎng)足球比賽中球員的跑動(dòng)軌跡和動(dòng)作。以下關(guān)于計(jì)算機(jī)視覺(jué)在體育賽事中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)對(duì)視頻的分析,自動(dòng)跟蹤球員的位置和運(yùn)動(dòng)軌跡B.能夠?qū)η騿T的動(dòng)作進(jìn)行分類(lèi),如傳球、射門(mén)和防守C.計(jì)算機(jī)視覺(jué)在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無(wú)需人工復(fù)查D.可以結(jié)合多攝像頭的信息,獲取更全面和準(zhǔn)確的比賽數(shù)據(jù)25、計(jì)算機(jī)視覺(jué)中的動(dòng)作識(shí)別是對(duì)視頻中人物或物體的動(dòng)作進(jìn)行分類(lèi)和識(shí)別。以下關(guān)于動(dòng)作識(shí)別的描述,不準(zhǔn)確的是()A.動(dòng)作識(shí)別需要分析視頻中的時(shí)空特征來(lái)理解動(dòng)作的模式和類(lèi)別B.雙流卷積網(wǎng)絡(luò)在動(dòng)作識(shí)別任務(wù)中被廣泛應(yīng)用,分別處理空間和時(shí)間信息C.動(dòng)作識(shí)別在體育分析、視頻監(jiān)控和智能安防等領(lǐng)域具有重要的應(yīng)用價(jià)值D.動(dòng)作識(shí)別技術(shù)已經(jīng)非常成熟,能夠準(zhǔn)確識(shí)別各種復(fù)雜和細(xì)微的動(dòng)作二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)描述計(jì)算機(jī)視覺(jué)在泥石流預(yù)警中的應(yīng)用。2、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的行人檢測(cè)任務(wù)。3、(本題5分)描述計(jì)算機(jī)視覺(jué)在金融領(lǐng)域的應(yīng)用。4、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的圖像壓縮算法。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某科技展會(huì)的展位設(shè)計(jì)充滿未來(lái)感,展示設(shè)備先進(jìn),互動(dòng)體驗(yàn)豐富。請(qǐng)剖析此展位設(shè)計(jì)如何吸引參觀者,如何展示企業(yè)的科技實(shí)力,以及在提升品牌知名度和拓展業(yè)務(wù)方面的作用。2、(本題5分)以一個(gè)兒童玩具品牌的包裝設(shè)計(jì)為例,分析其如何運(yùn)用色彩、圖形等元素吸引兒童并傳達(dá)品牌理念。3、(本題5分)研究一款具有地域特色的旅游紀(jì)念品包裝設(shè)計(jì),剖析其如何運(yùn)用當(dāng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論