版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年廣西河池市高二上學(xué)期12月聯(lián)考數(shù)學(xué)檢測試題一、單選題(本大題共8小題)1.已知拋物線的焦點為,拋物線上的點到焦點的距離為()A.1 B.2 C.3 D.42.已知直線,則與的距離為()A.1 B.2 C. D.3.若橢圓焦點在軸上且橢圓經(jīng)過點,,則該橢圓的標(biāo)準(zhǔn)方程為()A. B. C. D.4.已知兩個向量,且,則的值為(
)A.2 B.4 C.6 D.85.已知直線平分圓的周長,則()A.2 B.4 C.6 D.86.已知拋物線的準(zhǔn)線經(jīng)過雙曲線的一個焦點,則該雙曲線的漸近線方程為()A. B. C. D.7.在直四棱柱中,底面為等腰梯形,,,E為棱的中點,則到平面的夾角余弦值為()A. B. C. D.8.已知雙曲線的左、右焦點分別為、,,是雙曲線上關(guān)于原點對稱的兩點,并且,則的面積等于()A. B. C. D.二、多選題(本大題共1小題)9.已知直線,,則下列說法正確的是()A.當(dāng)時,直線的傾斜角為 B.當(dāng)時,C.若,則 D.直線始終過定點三、單選題(本大題共1小題)10.如圖,正方體的棱長為1,是上的中點,以下說法正確的是()
A.的面積是定值 B.與同向的單位向量是C.與夾角的余弦值為 D.平面的一個法向量是四、多選題(本大題共1小題)11.已知橢圓,上分別為它的左右焦點,點A,B分別為它的左右頂點,已知定點,點M是橢圓上的一個動點,下列結(jié)論中正確的有()A.存在4個點M,使得 B.直線與直線斜率乘積為定值C.有最小值 D.的取值范圍為五、填空題(本大題共3小題)12.已知直線l過點,傾斜角為,則直線l的縱截距為.13.已知圓與直線相切,則.14.雙曲線的離心率為.六、解答題(本大題共5小題)15.已知的頂點分別為.(1)求邊的中線所在直線的方程;(2)求邊的垂直平分線所在直線的方程.16.已知橢圓C:,M為橢圓上一點,,分別為它的左右焦點,M到,距離之和為4,離心率.(1)求橢圓C的方程;(2)若直線l:與橢圓交于A,B兩點,求|AB|的長以及三角形AOB面積.17.如圖,在四棱錐中,側(cè)棱底面,,且,,,為中點.(1)求點到平面的距離;(2)求平面與平面夾角的正弦值.18.已知圓,圓.(1)證明兩圓相交,并求兩圓公共弦長;(2)已知過點0,1的直線l與圓交于A,B兩點,且,求直線l的斜率.19.設(shè)拋物線的焦點為,已知點到圓上一點的距離的最大值為2.(1)求拋物線的方程;(2)已知是雙曲線左右焦點,過右焦點的直線與交于兩點.證明:.
答案1.【正確答案】C【詳解】解:由焦半徑公式得:.故選:C.2.【正確答案】C【詳解】由題意得,與的距離,故選:C3.【正確答案】B【詳解】橢圓焦點在軸上且橢圓經(jīng)過點0,2,所以,又,則,所以橢圓方程為,故選:B.4.【正確答案】A【詳解】因為,所以,解得,所以.故選:A.5.【正確答案】A【詳解】由,可得圓心為,因為直線平分圓的周長,所以直線過圓的圓心,則,解得.故選:A6.【正確答案】D【詳解】已知拋物線的準(zhǔn)線為,所以雙曲線的一個焦點為,所以,解得,所以雙曲線的漸近線方程為.故選:D.7.【正確答案】B【詳解】底面ABCD為等腰梯形,,如圖,在底面ABCD中,過點D作,垂足為H,以D為坐標(biāo)原點,分別以所在直線為x,y,z軸,建立空間直角坐標(biāo)系.則,可得,,設(shè)平面的法向量為,則,令,則,可得平面的一個法向量為,設(shè)到平面的夾角為,則,可得,所以到平面的夾角余弦值為.故選:B.8.【正確答案】B【詳解】由雙曲線的對稱性以及,是雙曲線上關(guān)于原點對稱的兩點可知,,,三點共線,連接,,,,,則四邊形為矩形,所以,,
由雙曲線可得,,則,所以,所以,又,所以,解得,所以.故選:B.9.【正確答案】ABD【詳解】對于A,當(dāng)時,直線,斜率,則傾斜角為,故A正確;對于B,等價于,解得,故B正確;對于C,若,則且,故,故C錯誤;對于D,,當(dāng)時,所以直線恒過,故D正確.故選:ABD.10.【正確答案】C【詳解】對A:在上且,到AC的距離等于到AC的距離,則為定值1,,故A選項錯誤;對B:因為建立不同的空間直角坐標(biāo)系,與同向的單位向量的表示方法會不同,所以B選項錯誤;同理,D選項也不對.如圖所示建系,,
對C:,,故C選項正確;故選:C11.【正確答案】AD【詳解】對于A中,由橢圓,可得,由,以為圓心,為直徑的圓,與橢圓C有4個交點,所以存在4個點M,使得,A選項正確;對于B中,設(shè),則,且,可得,則為定值,所以B選項錯誤.對于C中,由橢圓的定義,可得,則,當(dāng)且僅當(dāng)時,即時等號成立,所以C選項錯誤.對于D中,由點N在橢圓外,設(shè)直線與橢圓相交于,如圖所示,則,因為,且,可知,即,當(dāng)與重合時,等號成立,所以,所以,所以D選項正確.故選:AD.12.【正確答案】1【詳解】由題意知,斜率為,則直線方程為,令即,直線1的縱截距為1.故1.13.【正確答案】【詳解】由已知圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑為,依題意,.故答案為.14.【正確答案】2或【詳解】當(dāng),,所以.當(dāng),故2或.15.【正確答案】(1)(2).【詳解】(1)設(shè)中點的坐標(biāo)為,則,,所以,邊的中線過點兩點,所以,所以所在直線方程為,即;(2)因為的斜率,所以的垂直平分線的斜率,所以的垂直平分線所在直線的方程為,即.16.【正確答案】(1);(2).【詳解】(1)依題意,,則,由離心率,得,得,所以橢圓C的方程為.(2)由消去得,解得,則弦長;原點O到直線l:距離為:,所以三角形AOB面積:17.【正確答案】(1)(2)【詳解】(1)設(shè)與交點為,連接,則,所以平面,所以,,三條直線兩兩互相垂直,以,,所在的直線分別為,,軸建立如圖所示的空間直角坐標(biāo)系,由題意知,,則,,,,,E0,0,1,,,設(shè)平面EAD的法向量為,,可取,又,則點C到平面EAD的距離:;(2),,,,設(shè)平面PBC的法向量為,則,可取,所以,所以平面PBC與平面EAD夾角的余弦值為,所以平面PBC與平面EAD夾角的正弦值為.18.【正確答案】(1)證明見解析,(2)或.【詳解】(1)如圖:圓化成標(biāo)準(zhǔn)方程為,圓心,半徑,圓化成標(biāo)準(zhǔn)方程為,圓心,半徑,由,所以兩圓相交,兩圓方程作差得.即公共弦所在直線的方程為.圓的圓心到公共弦所在直線的距離為:,所以公共弦長為.(2)由題可知,設(shè)Ax1,①當(dāng)直線斜率不存在時,直線與交點在y軸上,顯然不滿足題意.②當(dāng)直線斜率存在時,設(shè)直線l方程為:,將代入,得,整理得,,,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)機(jī)房維護(hù)服務(wù)項目招標(biāo)
- 征收補償安置協(xié)議填寫指南
- 工程清潔服務(wù)合同模板
- 水果連鎖加盟購銷協(xié)議
- 盾構(gòu)掘進(jìn)勞務(wù)分包合同格式
- 學(xué)會寫有行動力的上學(xué)保證書
- 外墻涂料拆除合同
- 土建工程泥工分包合同
- 檢測檢驗服務(wù)合同
- 專業(yè)物流配送合同
- 配網(wǎng)規(guī)劃建設(shè)匯報
- 電氣自動化專業(yè)職業(yè)生涯目標(biāo)規(guī)劃書范例及步驟
- 2024-2025學(xué)年上學(xué)期天津六年級英語期末模擬卷1
- 餐飲行業(yè)智能點餐與外賣系統(tǒng)開發(fā)方案
- 2024-2025學(xué)年九年級數(shù)學(xué)上學(xué)期期末考試卷
- 水利工程特點、重點、難點及應(yīng)對措施
- 物業(yè)經(jīng)理轉(zhuǎn)正述職
- 24秋國家開放大學(xué)《企業(yè)信息管理》形考任務(wù)1-4參考答案
- 2024年共青團(tuán)團(tuán)課培訓(xùn)考試題庫及答案
- 2024年共青團(tuán)入團(tuán)考試測試題庫及答案
- 工程項目管理-001-國開機(jī)考復(fù)習(xí)資料
評論
0/150
提交評論