版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省商洛市洛南縣2025屆高三第五次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的一個(gè)焦點(diǎn)為,點(diǎn)是的一條漸近線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),以為直徑的圓過且交的左支于兩點(diǎn),若,的面積為8,則的漸近線方程為()A. B.C. D.2.若函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.3.若的二項(xiàng)展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.74.函數(shù)的一個(gè)單調(diào)遞增區(qū)間是()A. B. C. D.5.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.6.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為()A. B. C. D.8.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺9.設(shè)實(shí)數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.410.已知正方體的棱長(zhǎng)為,,,分別是棱,,的中點(diǎn),給出下列四個(gè)命題:①;②直線與直線所成角為;③過,,三點(diǎn)的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個(gè)數(shù)為()A. B. C. D.11.三棱柱中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,,則異面直線與所成角的余弦值為()A. B. C. D.12.如圖,在中,點(diǎn)是的中點(diǎn),過點(diǎn)的直線分別交直線,于不同的兩點(diǎn),若,,則()A.1 B. C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在上單調(diào)遞增,則實(shí)數(shù)a值范圍為_________.14.經(jīng)過橢圓中心的直線與橢圓相交于、兩點(diǎn)(點(diǎn)在第一象限),過點(diǎn)作軸的垂線,垂足為點(diǎn).設(shè)直線與橢圓的另一個(gè)交點(diǎn)為.則的值是________________.15.已知數(shù)列滿足:,,若對(duì)任意的正整數(shù)均有,則實(shí)數(shù)的最大值是_____.16.記等差數(shù)列和的前項(xiàng)和分別為和,若,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時(shí),若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實(shí)數(shù)a的取值范圍.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程及直線的直角坐標(biāo)方程;(2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.19.(12分)已知函數(shù),其中.(1)①求函數(shù)的單調(diào)區(qū)間;②若滿足,且.求證:.(2)函數(shù).若對(duì)任意,都有,求的最大值.20.(12分)正項(xiàng)數(shù)列的前n項(xiàng)和Sn滿足:(1)求數(shù)列的通項(xiàng)公式;(2)令,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N*,都有Tn<.21.(12分)橢圓:的左、右焦點(diǎn)分別是,,離心率為,左、右頂點(diǎn)分別為,.過且垂直于軸的直線被橢圓截得的線段長(zhǎng)為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、(不與點(diǎn)、重合),直線與直線相交于點(diǎn),求證:、、三點(diǎn)共線.22.(10分)如圖,在中,,,點(diǎn)在線段上.(1)若,求的長(zhǎng);(2)若,,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由雙曲線的對(duì)稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個(gè)焦點(diǎn)為,由雙曲線的對(duì)稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計(jì)算能力,屬于中檔題.2、C【解析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當(dāng)最大時(shí),,求得,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.3、B【解析】
先化簡(jiǎn)的二項(xiàng)展開式中第項(xiàng),然后直接求解即可【詳解】的二項(xiàng)展開式中第項(xiàng).令,則,∴,∴(舍)或.【點(diǎn)睛】本題考查二項(xiàng)展開式問題,屬于基礎(chǔ)題4、D【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡(jiǎn)表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項(xiàng).【詳解】因?yàn)?,由單調(diào)遞增,則(),解得(),當(dāng)時(shí),D選項(xiàng)正確.C選項(xiàng)是遞減區(qū)間,A,B選項(xiàng)中有部分增區(qū)間部分減區(qū)間.故選:D【點(diǎn)睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).5、D【解析】
先用復(fù)數(shù)的除法運(yùn)算將復(fù)數(shù)化簡(jiǎn),然后用模長(zhǎng)公式求模長(zhǎng).【詳解】解:z====﹣﹣,則|z|====.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的基本概念和基本運(yùn)算,屬于基礎(chǔ)題.6、A【解析】
本題根據(jù)基本不等式,結(jié)合選項(xiàng),判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識(shí)、基礎(chǔ)知識(shí)、邏輯推理能力的考查.【詳解】當(dāng)時(shí),,則當(dāng)時(shí),有,解得,充分性成立;當(dāng)時(shí),滿足,但此時(shí),必要性不成立,綜上所述,“”是“”的充分不必要條件.【點(diǎn)睛】易出現(xiàn)的錯(cuò)誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.7、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點(diǎn):雙曲線方程.8、A【解析】由題意,將楔體分割為三棱柱與兩個(gè)四棱錐的組合體,作出幾何體的直觀圖如圖所示:
沿上棱兩端向底面作垂面,且使垂面與上棱垂直,
則將幾何體分成兩個(gè)四棱錐和1個(gè)直三棱柱,
則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點(diǎn)睛】本題考查三視圖及幾何體體積的計(jì)算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計(jì)算是解題的關(guān)鍵.9、C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時(shí),且x∈-13,1時(shí),故選:C.【點(diǎn)睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.10、C【解析】
畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個(gè)命題的真假即可.【詳解】如圖;連接相關(guān)點(diǎn)的線段,為的中點(diǎn),連接,因?yàn)槭侵悬c(diǎn),可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點(diǎn)的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點(diǎn),所以,而,.所以三棱錐的體積為,④正確;故選:.【點(diǎn)睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.11、B【解析】
設(shè),,,根據(jù)向量線性運(yùn)算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長(zhǎng)為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項(xiàng):【點(diǎn)睛】本題考查異面直線所成角的求解,關(guān)鍵是能夠通過向量的線性運(yùn)算、數(shù)量積運(yùn)算將問題轉(zhuǎn)化為向量夾角的求解問題.12、C【解析】
連接AO,因?yàn)镺為BC中點(diǎn),可由平行四邊形法則得,再將其用,表示.由M、O、N三點(diǎn)共線可知,其表達(dá)式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點(diǎn)可得,,、、三點(diǎn)共線,,.故選:C.【點(diǎn)睛】本題考查了向量的線性運(yùn)算,由三點(diǎn)共線求參數(shù)的問題,熟記向量的共線定理是關(guān)鍵.屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價(jià)于在時(shí)恒成立,∴,解得.故答案為:.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,解題關(guān)鍵是問題轉(zhuǎn)化為恒成立,利用換元法和二次函數(shù)的性質(zhì)易求解.14、【解析】
作出圖形,設(shè)點(diǎn),則、,設(shè)點(diǎn),利用點(diǎn)差法得出,利用斜率公式得出,進(jìn)而可得出,可得出,由此可求得的值.【詳解】設(shè)點(diǎn),則、,設(shè)點(diǎn),則,兩式相減得,即,即,由斜率公式得,,,故,因此,.故答案為:.【點(diǎn)睛】本題考查橢圓中角的余弦值的求解,涉及了點(diǎn)差法與斜率公式的應(yīng)用,考查計(jì)算能力,屬于中等題.15、2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達(dá)式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因?yàn)?累加可得.若,注意到當(dāng)時(shí),,不滿足對(duì)任意的正整數(shù)均有.所以.當(dāng)時(shí),證明:對(duì)任意的正整數(shù)都有.當(dāng)時(shí),成立.假設(shè)當(dāng)時(shí)結(jié)論成立,即,則,即結(jié)論對(duì)也成立.由數(shù)學(xué)歸納法可知,對(duì)任意的正整數(shù)都有.綜上可知,所求實(shí)數(shù)的最大值是2.故答案為:2【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時(shí)注意結(jié)合參數(shù)的范圍問題進(jìn)行分析.屬于難題.16、【解析】
結(jié)合等差數(shù)列的前項(xiàng)和公式,可得,求解即可.【詳解】由題意,,,因?yàn)?所以.故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和公式及等差中項(xiàng)的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)。【解析】
(Ⅰ)分類討論,去掉絕對(duì)值,求得原絕對(duì)值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當(dāng)時(shí),原不等式可化為,此時(shí)不成立;當(dāng)時(shí),原不等式可化為,解得,即;當(dāng)時(shí),原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因?yàn)?,?dāng)且僅當(dāng)時(shí)等號(hào)成立,所以.當(dāng)時(shí),,所以.所以,解得,故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題主要考查了絕對(duì)值不等式的解法,以及轉(zhuǎn)化與化歸思想,難度一般;常見的絕對(duì)值不等式的解法,法一:利用絕對(duì)值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.18、(1),(2)最大值,最小值【解析】
(1)由曲線的參數(shù)方程,得兩式平方相加求解,根據(jù)直線的極坐標(biāo)方程,展開有,再根據(jù)求解.(2)因?yàn)榍€C是一個(gè)半圓,利用數(shù)形結(jié)合,圓心到直線的距離減半徑即為最小值,最大值點(diǎn)由圖可知.【詳解】(1)因?yàn)榍€的參數(shù)方程為所以兩式平方相加得:因?yàn)橹本€的極坐標(biāo)方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點(diǎn)到直線的最小值為:則點(diǎn)M(2,0)到直線的距離為最大值:【點(diǎn)睛】本題主要考查參數(shù)方程,普通方程及極坐標(biāo)方程的轉(zhuǎn)化和直線與圓的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.19、(1)①單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;②詳見解析;(2).【解析】
(1)①求導(dǎo)可得,再分別求解與的解集,結(jié)合定義域分析函數(shù)的單調(diào)區(qū)間即可.②根據(jù)(1)中的結(jié)論,求出的表達(dá)式,再分與兩種情況,結(jié)合函數(shù)的單調(diào)性分析的范圍即可.(2)求導(dǎo)分析的單調(diào)性,再結(jié)合單調(diào)性,設(shè)去絕對(duì)值化簡(jiǎn)可得,再構(gòu)造函數(shù),,根據(jù)函數(shù)的單調(diào)性與恒成立問題可知,再換元表達(dá)求解最大值即可.【詳解】解:,由可得或,由可得,故函數(shù)的單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;,或,若,因?yàn)?故,,由知在上單調(diào)遞增,,若由可得x1,因?yàn)?所以,由在上單調(diào)遞增,綜上.時(shí),,在上單調(diào)遞減,不妨設(shè)由(1)在上單調(diào)遞減,由,可得,所以,令,,可得單調(diào)遞減,所以在上恒成立,即在上恒成立,即,所以,,所以的最大值.【點(diǎn)睛】本題主要考查了分類討論分析函數(shù)單調(diào)性的問題,同時(shí)也考查了利用導(dǎo)數(shù)求解函數(shù)不等式以及構(gòu)造函數(shù)分析函數(shù)的最值解決恒成立的問題.需要根據(jù)題意結(jié)合定義域與單調(diào)性分析函數(shù)的取值范圍與最值等.屬于難題.20、(1)(2)見解析【解析】
(1)因?yàn)閿?shù)列的前項(xiàng)和滿足:,所以當(dāng)時(shí),,即解得或,因?yàn)閿?shù)列都是正項(xiàng),所以,因?yàn)椋?,解得或,因?yàn)閿?shù)列都是正項(xiàng),所以,當(dāng)時(shí),有,所以,解得,當(dāng)時(shí),,符合所以數(shù)列的通項(xiàng)公式,;(2)因?yàn)椋裕詳?shù)列的前項(xiàng)和為:,當(dāng)時(shí),有,所以,所以對(duì)于任意,數(shù)列的前項(xiàng)和.21、(1);(2)見解析【解析】
(1)根據(jù)已知可得,結(jié)合離心率和關(guān)系,即可求出橢圓的標(biāo)準(zhǔn)方程;(2)斜率不為零,設(shè)的方程為,與橢圓方程聯(lián)立,消去,得到縱坐標(biāo)關(guān)系,求出方程,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年養(yǎng)老保險(xiǎn)財(cái)務(wù)工作總結(jié)范文(2篇)
- 2025年企業(yè)安全生產(chǎn)發(fā)言稿范文(2篇)
- 2025年度智能社區(qū)小型建筑承包合同模板
- 電氣設(shè)備試驗(yàn)制度范文(2篇)
- 2025年中層競(jìng)聘上崗演講稿范例(3篇)
- 2024門窗行業(yè)產(chǎn)業(yè)鏈金融服務(wù)合同3篇
- 環(huán)境衛(wèi)生學(xué)監(jiān)測(cè)制度(2篇)
- 處室開展作風(fēng)建設(shè)實(shí)施方案范例(2篇)
- 木磨鋸工操作規(guī)程(3篇)
- 2024年訂制設(shè)備采購(gòu)協(xié)議模板版B版
- 高校搬遷可行性方案
- 充電樁選址優(yōu)化與布局規(guī)劃
- 科技產(chǎn)業(yè)園項(xiàng)目投資計(jì)劃書
- 苗木采購(gòu)?fù)稑?biāo)方案(技術(shù)標(biāo))
- JJF 1030-2023溫度校準(zhǔn)用恒溫槽技術(shù)性能測(cè)試規(guī)范
- 輸變電工程安全文明施工設(shè)施標(biāo)準(zhǔn)化配置表
- 一銷基氯苯生產(chǎn)車間硝化工段工藝初步設(shè)計(jì)
- 自動(dòng)控制原理仿真實(shí)驗(yàn)課程智慧樹知到課后章節(jié)答案2023年下山東大學(xué)
- 【城市軌道交通運(yùn)營(yíng)安全管理研究9200字(論文)】
- 丁往道英語寫作手冊(cè)范本課件
- 教學(xué)能力大賽獲獎(jiǎng)之教學(xué)實(shí)施報(bào)告
評(píng)論
0/150
提交評(píng)論