朔州陶瓷職業(yè)技術(shù)學(xué)院《數(shù)值分析B》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
朔州陶瓷職業(yè)技術(shù)學(xué)院《數(shù)值分析B》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
朔州陶瓷職業(yè)技術(shù)學(xué)院《數(shù)值分析B》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
朔州陶瓷職業(yè)技術(shù)學(xué)院《數(shù)值分析B》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)朔州陶瓷職業(yè)技術(shù)學(xué)院《數(shù)值分析B》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)分析時(shí),可能需要對(duì)多個(gè)數(shù)據(jù)集進(jìn)行合并和整合。假設(shè)你有來(lái)自不同部門(mén)的銷(xiāo)售數(shù)據(jù)和客戶(hù)數(shù)據(jù),以下關(guān)于數(shù)據(jù)合并的注意事項(xiàng),哪一項(xiàng)是最關(guān)鍵的?()A.確保數(shù)據(jù)的格式和字段名稱(chēng)一致,便于合并B.不考慮數(shù)據(jù)的重復(fù)和沖突,直接合并C.只合并部分重要的數(shù)據(jù)字段,忽略其他D.隨意選擇合并的順序和方式2、假設(shè)我們有一組銷(xiāo)售數(shù)據(jù),要分析不同產(chǎn)品類(lèi)別的銷(xiāo)售額在總銷(xiāo)售額中的占比情況,以下哪種圖表最能直觀地展示結(jié)果?()A.折線圖B.柱狀圖C.餅圖D.箱線圖3、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布和趨勢(shì),以下哪種組合的圖表較為合適?()A.直方圖和折線圖B.箱線圖和散點(diǎn)圖C.餅圖和柱狀圖D.雷達(dá)圖和樹(shù)形圖4、在建立分類(lèi)模型時(shí),如果數(shù)據(jù)存在類(lèi)別不平衡問(wèn)題,以下哪種技術(shù)可以用于數(shù)據(jù)增強(qiáng)?()A.生成對(duì)抗網(wǎng)絡(luò)B.自編碼器C.變分自編碼器D.以上都不是5、在數(shù)據(jù)預(yù)處理階段,若發(fā)現(xiàn)數(shù)據(jù)中存在大量缺失值,以下哪種處理方法較為合適?()A.直接刪除含缺失值的記錄B.用均值或中位數(shù)填充缺失值C.根據(jù)其他變量推測(cè)缺失值D.以上方法均可6、關(guān)于數(shù)據(jù)分析中的客戶(hù)細(xì)分,假設(shè)要根據(jù)客戶(hù)的購(gòu)買(mǎi)行為、人口統(tǒng)計(jì)信息和在線活動(dòng)將客戶(hù)分為不同的細(xì)分群體。以下哪種細(xì)分方法可能更能揭示客戶(hù)的潛在需求和行為模式?()A.RFM模型,基于消費(fèi)頻率、金額和最近消費(fèi)時(shí)間B.基于聚類(lèi)的細(xì)分,自動(dòng)發(fā)現(xiàn)相似群體C.基于決策樹(shù)的細(xì)分,根據(jù)規(guī)則劃分D.不進(jìn)行客戶(hù)細(xì)分,對(duì)所有客戶(hù)采用相同的策略7、在處理時(shí)間序列數(shù)據(jù)時(shí),例如股票價(jià)格的歷史數(shù)據(jù)。假設(shè)要預(yù)測(cè)未來(lái)一段時(shí)間的股票價(jià)格,以下哪種方法可能會(huì)受到數(shù)據(jù)季節(jié)性波動(dòng)的較大影響?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.隨機(jī)森林模型8、對(duì)于一個(gè)包含多個(gè)變量的數(shù)據(jù)集,想要了解變量之間的線性關(guān)系強(qiáng)度,可以計(jì)算?()A.方差B.協(xié)方差C.相關(guān)系數(shù)D.偏度9、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)你要檢驗(yàn)一種新的營(yíng)銷(xiāo)策略是否有效,以下關(guān)于假設(shè)檢驗(yàn)方法的選擇,哪一項(xiàng)是最恰當(dāng)?shù)??()A.選擇t檢驗(yàn),比較兩組數(shù)據(jù)的均值是否有顯著差異B.運(yùn)用方差分析,檢驗(yàn)多組數(shù)據(jù)之間是否存在差異C.使用卡方檢驗(yàn),判斷分類(lèi)變量之間的關(guān)聯(lián)D.不進(jìn)行假設(shè)檢驗(yàn),憑直覺(jué)判斷策略是否有效10、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的方法有很多,其中數(shù)據(jù)標(biāo)準(zhǔn)化是一種常用的方法。以下關(guān)于數(shù)據(jù)標(biāo)準(zhǔn)化的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)標(biāo)準(zhǔn)化可以將數(shù)據(jù)轉(zhuǎn)換為具有相同尺度和單位的數(shù)值B.數(shù)據(jù)標(biāo)準(zhǔn)化可以提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性C.數(shù)據(jù)標(biāo)準(zhǔn)化的方法有多種,如min-max標(biāo)準(zhǔn)化、z-score標(biāo)準(zhǔn)化等D.數(shù)據(jù)標(biāo)準(zhǔn)化只適用于數(shù)值型數(shù)據(jù),對(duì)于分類(lèi)型數(shù)據(jù)無(wú)法處理11、在數(shù)據(jù)可視化中,選擇合適的圖表類(lèi)型對(duì)于清晰傳達(dá)信息至關(guān)重要。假設(shè)要展示不同地區(qū)在過(guò)去十年間的人口增長(zhǎng)趨勢(shì),以下哪種圖表可能是最合適的?()A.餅圖B.雷達(dá)圖C.折線圖D.氣泡圖12、在數(shù)據(jù)預(yù)處理階段,對(duì)于含有大量缺失值的數(shù)據(jù),以下哪種處理方法不一定合適?()A.直接刪除含有缺失值的記錄B.用均值、中位數(shù)或眾數(shù)來(lái)填充缺失值C.通過(guò)建立模型來(lái)預(yù)測(cè)缺失值D.對(duì)缺失值不做任何處理13、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行降維并保留數(shù)據(jù)的主要特征,以下哪種方法基于矩陣分解?()A.主成分分析B.因子分析C.獨(dú)立成分分析D.以上都是14、在數(shù)據(jù)分析中,若要檢驗(yàn)數(shù)據(jù)是否來(lái)自于某個(gè)特定的分布,應(yīng)使用哪種檢驗(yàn)方法?()A.卡方擬合優(yōu)度檢驗(yàn)B.Kolmogorov-Smirnov檢驗(yàn)C.Shapiro-Wilk檢驗(yàn)D.以上都是15、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),特征工程是重要的環(huán)節(jié)。假設(shè)我們有一個(gè)包含房屋屬性(面積、房間數(shù)量、地理位置等)和價(jià)格的數(shù)據(jù)集,以下關(guān)于特征工程的描述,正確的是:()A.直接使用原始特征進(jìn)行建模,無(wú)需進(jìn)行任何特征轉(zhuǎn)換和構(gòu)建B.對(duì)地理位置進(jìn)行獨(dú)熱編碼可以有效地將其納入模型C.特征縮放對(duì)模型的性能沒(méi)有影響,可忽略D.增加一些與房屋價(jià)格無(wú)關(guān)的特征,能夠提高模型的準(zhǔn)確性16、在處理時(shí)間序列數(shù)據(jù)時(shí),除了考慮趨勢(shì)和季節(jié)性,還需要考慮數(shù)據(jù)的隨機(jī)性。假設(shè)要使用一種方法來(lái)平滑時(shí)間序列數(shù)據(jù),同時(shí)保留數(shù)據(jù)的主要特征,以下哪種方法可能是合適的?()A.簡(jiǎn)單移動(dòng)平均B.加權(quán)移動(dòng)平均C.指數(shù)加權(quán)移動(dòng)平均D.以上方法都可以17、在數(shù)據(jù)庫(kù)中,若要實(shí)現(xiàn)多表之間的關(guān)聯(lián)查詢(xún),以下哪種連接方式較為常用?()A.內(nèi)連接B.外連接C.交叉連接D.自然連接18、對(duì)于一個(gè)不平衡的數(shù)據(jù)集(例如,某一類(lèi)別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類(lèi)別),以下哪種方法可以提高模型對(duì)少數(shù)類(lèi)別的識(shí)別能力?()A.過(guò)采樣B.欠采樣C.調(diào)整分類(lèi)閾值D.以上都是19、在進(jìn)行時(shí)間序列分析時(shí),如果數(shù)據(jù)存在明顯的長(zhǎng)期趨勢(shì)和季節(jié)性變動(dòng),以下哪種模型較為適用?()A.ARIMA模型B.SARIMA模型C.Holt-Winters模型D.以上都不是20、數(shù)據(jù)分析中的文本分析是一個(gè)重要領(lǐng)域。假設(shè)你要對(duì)大量的客戶(hù)評(píng)論進(jìn)行情感分析,判斷是正面、負(fù)面還是中性。以下關(guān)于文本分析方法的選擇,哪一項(xiàng)是最重要的?()A.使用詞袋模型,基于詞頻統(tǒng)計(jì)進(jìn)行分析B.運(yùn)用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò),自動(dòng)提取特征C.借助詞典和規(guī)則,根據(jù)預(yù)定義的情感詞和句式判斷D.隨機(jī)抽取部分評(píng)論進(jìn)行人工分析,以此類(lèi)推整體21、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中聚類(lèi)分析是一種常用的方法。以下關(guān)于聚類(lèi)分析的描述中,錯(cuò)誤的是?()A.聚類(lèi)分析可以將數(shù)據(jù)分為不同的類(lèi)別,使得同一類(lèi)中的數(shù)據(jù)具有相似的特征B.聚類(lèi)分析的結(jié)果可以用聚類(lèi)中心和聚類(lèi)半徑來(lái)表示C.聚類(lèi)分析可以用于數(shù)據(jù)的分類(lèi)和預(yù)測(cè)D.聚類(lèi)分析的算法有多種,如k-means聚類(lèi)、層次聚類(lèi)等22、在對(duì)一個(gè)城市的空氣質(zhì)量數(shù)據(jù)進(jìn)行分析,例如污染物濃度、氣象條件、季節(jié)因素等,以制定環(huán)境政策和改善空氣質(zhì)量。以下哪種分析方法可能有助于找出主要的污染源和影響因素?()A.方差分析B.因果分析C.判別分析D.以上都是23、在數(shù)據(jù)分析中,特征工程用于從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要對(duì)文本數(shù)據(jù)進(jìn)行特征工程,以下關(guān)于特征工程的描述,哪一項(xiàng)是不正確的?()A.可以使用詞頻-逆文檔頻率(TF-IDF)來(lái)衡量單詞在文本中的重要性B.詞嵌入技術(shù),如Word2Vec,可以將單詞表示為低維向量C.特征工程只需要考慮數(shù)據(jù)的數(shù)值特征,對(duì)于文本等非數(shù)值特征不需要處理D.特征選擇可以去除冗余和無(wú)關(guān)的特征,提高模型的效率和性能24、數(shù)據(jù)分析中的推薦系統(tǒng)廣泛應(yīng)用于電商、娛樂(lè)等領(lǐng)域。假設(shè)要為一個(gè)在線音樂(lè)平臺(tái)構(gòu)建推薦系統(tǒng),根據(jù)用戶(hù)的歷史播放記錄和偏好為其推薦歌曲。以下哪種推薦算法在處理這種音樂(lè)推薦場(chǎng)景時(shí)更能滿(mǎn)足用戶(hù)的個(gè)性化需求?()A.基于內(nèi)容的推薦B.協(xié)同過(guò)濾推薦C.基于知識(shí)的推薦D.混合推薦25、假設(shè)要分析一個(gè)項(xiàng)目的成本效益,以下關(guān)于成本效益分析方法的描述,正確的是:()A.只考慮直接成本和直接收益,忽略間接成本和潛在收益B.凈現(xiàn)值(NPV)為正數(shù)時(shí),項(xiàng)目一定可行C.內(nèi)部收益率(IRR)越高,項(xiàng)目的效益越好D.不考慮項(xiàng)目的風(fēng)險(xiǎn)和不確定性,進(jìn)行簡(jiǎn)單的成本效益計(jì)算26、數(shù)據(jù)分析中的數(shù)據(jù)集成涉及將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要將來(lái)自不同數(shù)據(jù)庫(kù)的客戶(hù)信息和交易數(shù)據(jù)集成,以下哪個(gè)問(wèn)題可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)格式不一致B.數(shù)據(jù)字段的命名差異C.數(shù)據(jù)的重復(fù)和沖突D.以上問(wèn)題都很具有挑戰(zhàn)性27、數(shù)據(jù)分析中的時(shí)間序列分析常用于預(yù)測(cè)未來(lái)趨勢(shì)。假設(shè)要預(yù)測(cè)未來(lái)一個(gè)月的某商品銷(xiāo)售量,該商品的銷(xiāo)售數(shù)據(jù)具有明顯的季節(jié)性和趨勢(shì)性。以下哪種時(shí)間序列預(yù)測(cè)模型在這種情況下更有可能提供準(zhǔn)確的預(yù)測(cè)?()A.移動(dòng)平均模型B.指數(shù)平滑模型C.ARIMA模型D.Prophet模型28、在數(shù)據(jù)庫(kù)中,索引可以提高數(shù)據(jù)的查詢(xún)效率。以下哪種情況下不適合創(chuàng)建索引?()A.表中數(shù)據(jù)量較小B.經(jīng)常作為查詢(xún)條件的字段C.唯一性較差的字段D.頻繁更新的字段29、在數(shù)據(jù)分析的模型評(píng)估中,假設(shè)建立了一個(gè)預(yù)測(cè)模型,需要評(píng)估其性能。除了準(zhǔn)確率,以下哪個(gè)評(píng)估指標(biāo)對(duì)于衡量模型的泛化能力可能更重要?()A.召回率,衡量模型找到正例的能力B.F1值,綜合考慮準(zhǔn)確率和召回率C.均方誤差,用于連續(xù)值的預(yù)測(cè)D.不關(guān)注評(píng)估指標(biāo),認(rèn)為模型是完美的30、在進(jìn)行地理數(shù)據(jù)分析時(shí),以下關(guān)于地理數(shù)據(jù)分析方法的描述,正確的是:()A.簡(jiǎn)單的地圖繪制就能充分展示地理數(shù)據(jù)的特征B.空間聚類(lèi)分析對(duì)于發(fā)現(xiàn)地理數(shù)據(jù)中的聚集模式?jīng)]有幫助C.地理加權(quán)回歸可以考慮空間異質(zhì)性對(duì)變量關(guān)系的影響D.不需要考慮地理坐標(biāo)系和投影的選擇,對(duì)分析結(jié)果影響不大二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)社交媒體廣告投放效果的評(píng)估對(duì)于企業(yè)營(yíng)銷(xiāo)至關(guān)重要。請(qǐng)論述如何利用數(shù)據(jù)分析來(lái)衡量社交媒體廣告的曝光量、點(diǎn)擊率、轉(zhuǎn)化率等指標(biāo),分析影響廣告效果的因素,并提出優(yōu)化廣告投放策略的建議。2、(本題5分)交通領(lǐng)域的數(shù)據(jù),如交通流量、路況信息、公共交通運(yùn)營(yíng)數(shù)據(jù)等,具有重要的價(jià)值。探討如何運(yùn)用數(shù)據(jù)分析來(lái)優(yōu)化交通規(guī)劃、緩解交通擁堵、提高公共交通的服務(wù)質(zhì)量,并分析數(shù)據(jù)分析在智能交通系統(tǒng)中的關(guān)鍵技術(shù)和應(yīng)用挑戰(zhàn)。3、(本題5分)隨著智能交通系統(tǒng)的發(fā)展,交通流量數(shù)據(jù)、路況數(shù)據(jù)等大量涌現(xiàn)。詳細(xì)論述如何運(yùn)用數(shù)據(jù)分析,例如智能信號(hào)燈控制優(yōu)化、擁堵路段預(yù)測(cè)等,改善城市交通狀況,同時(shí)分析在數(shù)據(jù)融合難度大、實(shí)時(shí)處理要求高和交通模型準(zhǔn)確性方面的挑戰(zhàn)及解決辦法。4、(本題5分)隨著共享經(jīng)濟(jì)的發(fā)展,共享單車(chē)和共享汽車(chē)平臺(tái)積累了大量的使用數(shù)據(jù)。以某共享出行平臺(tái)為例,論述如何運(yùn)用數(shù)據(jù)分析來(lái)優(yōu)化車(chē)輛投放策略、提高車(chē)輛利用率、預(yù)測(cè)用戶(hù)需求,以及如何解決數(shù)據(jù)稀疏性和動(dòng)態(tài)變化的問(wèn)題。5、(本題5分)在能源交易市場(chǎng)中,數(shù)據(jù)分析對(duì)于價(jià)格預(yù)測(cè)和交易策略制定至關(guān)重要。以某能源交易公司為例,論述如何利用數(shù)據(jù)分析來(lái)預(yù)測(cè)能源價(jià)格波動(dòng)、制定最優(yōu)交易策略、管理風(fēng)險(xiǎn),以及如何整合市場(chǎng)數(shù)據(jù)和宏觀經(jīng)濟(jì)指標(biāo)。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋什么是數(shù)據(jù)可視化,以及它在數(shù)據(jù)分析中的重要性。請(qǐng)列舉至少三種常見(jiàn)的數(shù)據(jù)可視化圖表,并說(shuō)明其適用場(chǎng)景。2、(本題5分)描述數(shù)據(jù)分析中的時(shí)間序列分解技術(shù),如加法模型和乘法模型,說(shuō)明如何通過(guò)分解進(jìn)行預(yù)測(cè)和分析,并舉例說(shuō)明在銷(xiāo)售數(shù)據(jù)預(yù)測(cè)中的應(yīng)用。3、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行特征的交互作用分析,解釋其重要性和常用方法,并舉例說(shuō)明在實(shí)際問(wèn)題中的應(yīng)用。4、(本題5分)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論