版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
NobelPrizehighlightsneuralnetworks’physicsroots罡
Theroadtothemodernmachine-learningmarvelswaspavedwithideasfromstatisticalmechanicsandcollectivephenomena.
JohannaL.Miller
PhysicsToday77(12),12–16(2024);
/10.1063/pt.qjmx.snxw
恩
View
Online
CrossMark
5
Export
Citation
24December202423:32:07
SEARCH&DISCOVERY
NobelPrizehighlightsneuralnetworks’
physicsroots
Theroadtothemodern
MATTRASPANTI/PRINCETONUNIVERSITY
JOHNNYGUATTO/UNIVERSITYOFTORONTO
machine-learningmarvelswaspavedwithideasfromstatisticalmechanicsandcollectivephenomena.
“G
arbagein,garbageout.”According
totheoldadagefromcomputersci-
JohnHop?eld
Geo?reyHinton
onthoseideastodevelopthealgorithmsusedbyneural-networkmodelstoday.
Glassymemory
Itwasfarfromobvious,atfirst,thatneuralnetworkswouldevergrowtobesopowerful.Asrecentlyas2011,theflashiestmilestonesinAIwerebeingachievedbyanotherapproachentirely.IBMWatson,thecomputerthatbeatKenJenningsandBradRutteratJeop-ardy!,wasnotaneuralnetwork:Itwasexplicitlyprogrammedwithrulesforlanguageprocessing,informationre-trieval,andlogicalreasoning.AndmanyresearchersthoughtthatwasthewaytogotocreatepracticalAImachines.
Incontrast,theearlyworkonneuralnetworkswascuriosity-drivenresearch,inspiredmorebyrealbrainsthanbycomputersandtheirapplications.Butthenatureoftheinterdisciplinaryconnectionwassubtle.“ThequestionsHopfieldad-dressedarenotunrelatedtothingsneuro-scientistswereworriedabout,”saysPrinceton’sWilliamBialek.“Butthisisn’tabout‘a(chǎn)pplicationofphysicstoX’;rather,it’saboutintroducingawholepointofviewthatjustdidn’texistbefore.”
Bythe1980s,neuroscientistshadknownfordecadesthatthebrainiscom-posedofneurons,whichareconnectedtooneanotherviasynapsesandalter-natebetweenperiodsofhighandlowelectricalactivity(colloquially,“firing”and“notfiring”),andtheywerestudy-ingsystemsofafewneuronstounder-standhowoneneuron’sfiringaffected
thoseitwasconnectedto.“Somethoughtofneuronsintermsoflogicgates,likeinelectronics,”saysStanfordUniversity’sJayMcClelland.
Inalandmark1982paper,Hopfieldtookadifferentapproach.1Inphysics,heargued,manyimportantpropertiesoflarge-scalesystemsareindependentofsmall-scaledetails.Allmaterialscon-ductsoundwaves,forexample,irrespec-tiveofexactlyhowtheiratomsormole-culesinteract.Microscopicforcesmightaffectthespeedofsoundorotheracous-ticproperties,butstudyingtheforcesamongthreeorfouratomsrevealslittleabouthowtheconceptofsoundwavesemergesinthefirstplace.
Sohewrotedownamodelofanet-workofneurons,withaneyemoreto-wardcomputationalandmathematicalsimplicitythanneurobiologicalrealism.Themodel,nowknownasaHopfieldnetwork,issketchedinfigure1.(Thefig-ureshowsafive-neuronnetworkforeaseofillustration;Hopfieldwassimulatingnetworksof30to100neurons.)Eachneuroncanbeinstate1,forfiring,orstate0,fornotfiring.Andeachneuronwasconnectedtoalltheothersviacouplingconstantsthatcouldhaveanypositiveornegativevalue,dependingonwhethereachsynapsefavorsordisfavorstheneu-ronstobothbefiringatthesametime.
That’sexactlythesameformasaspinglass,afamouslythornysystemfromcondensed-matterphysics.(SeePhysicsToday,December2021,page17.)Unlikeaferromagnet,inwhichthecouplingsareall
ence,whatyougetfromacomputerisnobetterthanwhatyougiveit.Anditwouldseemtoimplythatbecausecom-puterscan’tthinkforthemselves,theycanneverdoanythingmoresophisti-catedthanwhatthey’vebeenexplicitlyinstructedto.
24December202423:32:07
Butthatlastpartappearstobenolongertrue.Neuralnetworks—computingarchitectures,inspiredbythehumanbrain,inwhichsignalsarepassedamongnodescalledartificialneurons—have,inrecentyears,beenproducingwaveafterwaveofstunningresults.(See,forexam-ple,page17ofthisissue.)Individualartificialneuronsperformonlythemostelementaryofcomputations.Butwhenbroughttogetherinlargeenoughnum-bers,andwhenfedonenoughtrainingdata,theyacquirecapabilitiesuncannilyreminiscentofhumanintelligence,seem-inglyoutofnowhere.
Physicistsarenostrangerstotheideaofunexpectedphenomenaemergingfromsimplerbuildingblocks.Afewel-ementaryparticlesandtherulesoftheirinteractionscombinetoyieldalmostthewholeofthevisibleworld:super-conductors,plasmas,andeverythinginbetween.Whyshouldn’taphysicsap-proachtoemergentcomplexitybeap-pliedtoneuralnetworkstoo?
Indeed,itwas—andstillis—asshow-casedbythisyear’sNobelPrizeinPhys-ics,whichgoestoPrincetonUniversity’sJohnHopfieldandtheUniversityofTo-ronto’sGeoffreyHinton.Beginningintheearly1980s,Hopfieldlaidthecon-ceptualfoundationsforphysics-basedthinkingaboutbrain-inspiredinforma-tionprocessing;Hintonwasatthefore-frontofthedecades-longefforttobuild
12PHYSICSTODAY|DECEMBER2024
10
1
00
FIGURE1.AHOPFIELDNETWORK,formallyequivalenttoaspinglass,functionsasanassociativememory:Whenpresentedwithapartiallyrecalledstate,itusesanenergy-loweringalgorithmtofillinthegaps.Thememoriesarestoredinthestrengthsofthe
connectionsamongthenodes.WhenJohnHopfieldshowedthatwiththerightcombinationofconnectionweights,thenetworkcouldstoremanymemoriessimultaneously,hesetthestageforphysics-basedthinkingaboutneuralnetworks.(FigurebyFreddiePagani;rabbitphotobyJMLigeroLoarte/WikimediaCommons/CCBY3.0.)
positiveandthesystemhasacleargroundstatewithallitsspinsaligned,aspinglassalmostalwayslacksastatethatsatisfiesallitsspins’energeticpreferencessimul-taneously.Itsenergylandscapeiscom-plex,withmanylocalenergyminima.
Hopfieldarguedthatthelandscapecouldserveasamemory,witheachoftheenergy-minimizingconfigurationsservingasastatetoberemembered.Andhepresentedanelegantwayofset-tingtheconnectionstrengths—inspiredbywhathappensatrealsynapses—sothatthememorywouldstoreanyde-siredcollectionofstates.
ButtheHopfieldnetworkisfunda-mentallydifferentfromanordinarycom-putermemory.Inacomputer,eachitemofdatatobestoredisencodedasastringofonesandzerosinaspecificplace,andit’srecalledbygoingbacktothatplaceandreadingoutthestring.InaHopfieldnetwork,alltheitemsarestoredsimulta-neouslyinthecouplingstrengthsofthewholenetwork.Andtheycanberecalledassociatively,bygivingthenetworkastartingpointthatsharesjustafewfea-tureswithoneoftherememberedstatesandallowingittorelaxtothenearestenergyminimum.Moreoftenthannot,itwillrecallthedesiredmemory.(SeealsothearticlesbyHaimSompolinsky,PhysicsToday,December1988,page70,andJohnHopfield,PhysicsToday,Feb-ruary1994,page40.)
Thoseareboththingsthathappeninrealbrains.“Itwasknownexperimen-tallyinhigheranimalsthatbrainactivitywaswellspreadout,anditinvolved
manyneurons,”saysHopfield.Andas-sociativememoryissomethingyou’vedirectlyexperiencedifyou’veeverre-calledasongyou’veheardbeforeafterhearingonerandomline.
Hopfield’smodelwasavastsimplifica-tionofarealbrain.Realneuronsarein-trinsicallydynamic,notcharacterizedbystaticstates,andrealneuronconnectionsarenotsymmetric.Butinaway,thosedifferenceswerefeatures,notbugs:They
showedthatcollective,associativemem-orywasanemergentlarge-scalephenom-enon,robustagainstsmall-scaledetails.
Learninghowtolearn
“NotonlyisHopfieldaverygoodphysi-cist,buttheHopfieldmodelisexcellentphysicsbyitself,”saysLeovanHemmen,oftheTechnicalUniversityofMunich.Still,its1982formulationleftmanyin-triguingopenquestions.Hopfieldhadfocusedonsimulationstoshowhowthesystemrelaxestoanenergyminimum;wouldthemodeladmitamorerobustanalyticaltreatment?Howmanystatescouldthemodelremember,andwhatwouldhappenifitwasoverloaded?Weretherebetterwaysofsettingthecon-nectionstrengthsthantheoneHopfieldproposed?
Thosequestions,andothers,weretakenonbyaflurryofphysics-trainedresearcherswhowereinspiredbyHopfield’sworkandenteredtheneural-networkfieldoverthe1980s.“Physicistsareversatile,curious,andarrogant—inapositiveway,”saysEytanDomany,oftheWeizmannInstituteofScienceinIsrael.
“They’rewillingtostudythoroughlyandthentackleaproblemthey’veneverseenbefore,ifit’sinteresting.Andeveryoneisexcitedaboutunderstandingthebrain.”
24December202423:32:07
AnotherpartoftheappealwasinhowHopfieldhadtakenatraditionalphysicsproblemandturneditonitshead.“Inmostenergy-landscapeprob-lems,you’regiventhemicroscopicinter-actions,andyouask,Whatisthegroundstate?Whatarethelocalminima?Whatistheentirelandscape?”saysHaimSompolinsky,oftheHebrewUniversityofJerusalem.“The1982paperdidtheopposite.Westartwiththegroundstatesthatwewant:thememories.Andweask,Whatarethemicroscopicinteractionsthatwillsupportthoseasgroundstates?”
Fromthere,itwasashortconceptualleaptoask,Whatifthecouplingstrengthsthemselvescanevolveontheirownen-ergylandscape?Thatis,insteadofbeingpreprogrammedwithparameterstoen-codespecificmemories,canthesystemimproveitselfbylearning?
Machinelearninginneuralnetworkshadbeentriedbefore.Theperceptron—aneural-network-likedevicethatsortedim-agesintosimplecategories,suchascirclesandsquares—datesbacktothe1950s.Whenprovidedwithaseriesoftrainingimagesandasimplealgorithmforupdat-ingitsconnectionsbetweenneurons,itcouldeventuallylearntocorrectlyclassifyevenimagesithadn’tseenbefore.
Buttheperceptrondidn’talwayswork:Withthewaythenetworkwasstructured,sometimestherewasn’tanywayofsettingtheconnectionstrengths
DECEMBER2024|PHYSICSTODAY13
SEARCH&DISCOVERY
3
10
0
1
01
A
3
3
3
3
3
FIGURE2.ABOLTZMANNMACHINEextendstheHopfieldnetworkintwoways:Itaugmentsthenetworktoincludehidden
nodes(showninthecenterofthenetworkingray)thataren’tinvolvedinencodingthedata,anditoperatesatanonzeroeffectivetemperature,sothattheentirespaceofconfigurationscanbecharacterizedbyaBoltzmannprobabilitydistribution.Geoffrey
HintonandcolleaguesdevelopedawaytotraintheBoltzmannmachineasagenerativemodel:Whenpresentedwithseveralinputsthatallsharedacommonfeature,itproducedmoreitemsofthesametype.(FigurebyFreddiePagani.)
toperformthedesiredclassification.“Whenthathappened,youcoulditer-ateforever,andthealgorithmwouldneverconverge,”saysvanHemmen.“Thatwasabigshock.”Withoutaguid-ingprincipletochartapathforward,thefieldhadstalled.
Findingcommonground
Hintondidn’tcometoneuralnetworksfromabackgroundinphysics.ButhiscollaboratorTerrenceSejnowski—who’dearnedhisPhDunderHopfieldin1978—did.Together,theyextendedtheHop-fieldnetworkintosomethingtheycalledtheBoltzmannmachine,whichvastlyextendedthemodel’scapabilitiesbyex-plicitlydrawingonconceptsfromstatis-ticalphysics.2
InHopfield’s1982simulations,he’deffectivelyconsideredthespin-glassnet-workatzerotemperature:Heallowedthesystemtoevolveitsstateonlyinwaysthatwouldloweritsoverallenergy.Sowhateverthestartingstate,itrolledintoanearbylocalenergyminimumandstayedthere.
“TerryandIimmediatelystartedthinkingaboutthestochasticversion,withnonzerotemperature,”saysHinton.In-steadofadeterministicenergy-loweringrule,theyusedaMonteCarloalgorithmthatallowedthesystemtooccasionallyjumpintoastateofhigherenergy.Givenenoughtime,astochasticsimulationofthenetworkwouldexploretheentireen-ergylandscape,anditwouldsettleintoaBoltzmannprobabilitydistribution,withallthelow-energystates—regardlessof
14PHYSICSTODAY|DECEMBER2024
whetherthey’relocalenergyminima—representedwithhighprobability.
“Andin1983,wediscoveredareallybeautifulwaytodolearning,”Hintonsays.Whenthenetworkwassuppliedwithtrainingdata,theyiterativelyup-datedtheconnectionstrengthssothatthedatastateshadhighprobabilityintheBoltzmanndistribution.3Moreover,whentheinputdatahadsomethingincommon—liketheimagesofthenu-meral3infigure2—thenotherhigh-probabilitystateswouldsharethesamecommonfeatures.
Thekeyingredientforthatkindofcommonalityfindingwasaugmentingthenetworktoincludemorenodesthanjusttheonesthatencodethedata.Thosehiddennodes,representedingrayinfigure2,allowthesystemtocapturehigher-levelcorrelationsamongthedata.
Inprinciple,theBoltzmannmachinecouldbeusedformachinerecognitionofhandwritingorfordistinguishingnormalfromemergencyconditionsinafacilitysuchasapowerplant.Unfortu-nately,theBoltzmannmachine’slearn-ingalgorithmisprohibitivelyslowformostpracticalapplications.Itremainedatopicofacademicresearch,butitdidn’tfindmuchreal-worlduse—untilitmadeasurprisingreappearanceyearslater.
Howthenetworkswork
Aroundthesametime,HintonwasworkingwithcognitivescientistDavidRumelhartonanotherlearningalgo-rithm,whichwouldbecomethesecretsauceofalmostalloftoday’sneural
24December202423:32:07
networks:backpropagation.4Thealgo-rithmwasdevelopedforadifferentkindofnetworkarchitecture,calledafeed-forwardnetwork,showninfigure3.IncontrasttotheHopfieldnetworkandBoltzmannmachine,withtheirbidirec-tionalconnectionsamongnodes,signalsinafeedforwardnetworkflowinonedirectiononly:fromalayerofinputneu-rons,throughsomenumberofhiddenlayers,totheoutput.Asimilararchitec-turehadbeenusedinthemultilayerperceptron.
Supposeyouwanttotrainafeed-forwardnetworktoclassifyimages.Yougiveitapictureofarabbit,andyouwantittoproducetheoutputmessage“Thisisarabbit.”Butsomethingiswrong,andinsteadyougettheoutput“Thisisaturtle.”Howdoyougetthingsbackontrack?Thenetworkmighthavedozensorhundreds—ortoday,trillions—ofinter-nodeconnectionsthatcontributetotheoutput,eachwithitsownnumericalweight.There’sadizzyingnumberofwaystoadjustthemalltotrytogettheoutputyouwant.
Backpropagationsolvesthatproblemthroughgradientdescent:First,youde-fineanerrorfunctionthatquantifieshowfartheoutputyougotisfromtheoutputyouwant.Then,calculatethepartialde-rivativesoftheerrorfunctionwithre-specttoeachoftheinternodalweights—asimplematterofrepeatedlyapplyingcalculus’schainrule.Finally,usethosederivativestoadjusttheweightsinawaythatdecreasestheerror.
Itmighttakemanyrepetitionstoget
0.3
0.4
Rabbit
0.1
0.5
0.9
0.8
0.7
0.6
0.6
Writeahaikuaboutarabbit
Softearsinthegrass,
Hoppingthroughthemorningdew,Nature’squietjoy.
0.5
0.9
0.2
FIGURE3.AFEEDFORWARDNETWORK,trainedbybackpropagation,isthebasicstructureoftheneuralnetworksusedtoday.
Bypassingnumericalsignalsfromaninputlayerthroughhiddenlayerstoanoutputlayer,feedforwardnetworksperformfunctionsthatincludeimageclassificationandtextgeneration.(FigurebyFreddiePagani;rabbitphotobyJMLigeroLoarte/Wikimedia
Commons/CCBY3.0;haikugeneratedbyGPT-4,OpenAI,22October2024.)
theerrorcloseenoughtozero—andyou’llwanttomakesurethatthenetworkgivestherightoutputformanyinputs,notjustone.Butthosebasicstepsareusedtotrainallkindsofnetworks,includingproof-of-conceptimageclassifiersandlargelan-guagemodels,suchasChatGPT.
Gradientdescentisintuitivelyele-gant,anditwasn’tconceptuallynew.“Butseveralelementshadtocometo-gethertogetthebackpropagationideatowork,”saysMcClelland.“Foronething,youcan’ttakethederivativeofsome-thingifit’snotdifferentiable.”Realneu-ronsoperatemoreorlessindiscreteonandoffstates,andtheoriginalHopfieldnetwork,Boltzmannmachine,andper-ceptronwerealldiscretemodels.Forbackpropagationtowork,itwasneces-sarytoshifttoamodelinwhichthenodestatescantakeacontinuumofvalues.Butthosecontinuous-valuednetworkshadalreadybeenintroduced,includingina1984paperbyHopfield.5
Asecondinnovationhadtowaitforlonger.Backpropagationworkedwellfornetworkswithjustacoupleoflayers.Butwhenthelayercountapproachedfiveormore—atriflingnumberbyto-day’sstandards—someofthepartialde-rivativesweresosmallthatthetrainingtookanimpracticallylongtime.
Intheearly2000s,Hintonfoundasolution,anditinvolvedhisoldBoltz-mannmachine—orrather,aso-calledrestrictedversionofit,inwhichtheonlyconnectionsarethosebetweenonehid-denneuronandonevisible(non-hidden)neuron.6RestrictedBoltzmannmachines(RBMs)areeasytocomputationally
model,becauseeachgroupofneurons—visibleandhidden—couldbeupdatedallatonce,andtheconnectionweightscouldallbeadjustedtogetherinasinglestep.Hinton’sideawastoisolatepairsofsuccessivelayersinafeedforwardnetwork,trainthemasiftheywereRBMstogettheweightsapproximatelyright,andthenfine-tunethewholenetworkusingbackpropagation.
“Itwaskindofahackything,butitworked,andpeoplegotveryexcited,”saysGrahamTaylor,oftheUniversityofGuelphinCanada,whoearnedhisPhDunderHintonin2009.“Itwasnowpos-sibletotrainnetworkswithfive,six,sevenlayers.Peoplecalledthem‘deep’networks,andtheystartedusingtheterm‘deeplearning.’”
TheRBMhackwasn’tusedforlong.Computingpowerwasadvancingsoquickly—particularlywiththerealizationthatgraphicsprocessingunits(GPUs)wereideallysuitedtothecomputationsneededforneuralnetworks—thatwithinafewyears,itwaspossibletodoback-propagationonevenlargernetworksfromacoldstart,withnoRBMsrequired. “IfRBMlearninghadn’thappened,wouldGPUshavecomealonganyway?”asksTaylor.“That’sarguable.Buttheex-citementaroundRBMschangedtheland-scape:Itledtotherecruitmentandtrain-ingofnewstudentsandtonewwaysofthinking.Ithinkattheveryleast,itwouldn’thavehappenedthesameway.”
What’snewisold
Today’snetworksusehundredsorthou-sandsoflayers,buttheirformislittle
24December202423:32:07
changedfromwhatHintondescribed.“Ilearnedaboutneuralnetworksfrombooksfromthe1980s,”saysBernhardMehlig,oftheUniversityofGothenburginSweden.“WhenIstartedteachingit,Irealizedthatnotmuchisnew.It’sessen-tiallytheoldstuff.”Mehlignotesthatinatextbookhewrote,publishedin2021,part1of3isaboutHopfield,andpart2isaboutHinton.
Neuralnetworksnowinfluenceavastnumberofhumanendeavors:They’reinvolvedindataanalysis,websearches,andcreatinggraphics.Aretheyintelli-gent?It’seasytodismissthequestionoutofhand.“Therehavealwaysbeenlotsofthingsthatmachinescandobetterthanhumans,”saystheUniversityofMaryland’sSankarDasSarma.“Thathasnothingtodowithbecominghuman.ChatGPTisfabulouslygoodatsomethings,butatmanyothers,it’snotevenasgoodasatwo-year-oldbaby.”
Anillustrativecomparisonisthevastdatagapbetweentoday’sneuralnet-worksandhumans.7Aliterate20-year-oldmayhavereadandheardafewhun-dredmillionwordsinlifesofar.Largelanguagemodels,incontrast,aretrainedonhundredsofbillionsofwords,anum-berthatgrowswitheachnewrelease.WhenyouaccountforthefactthatChatGPThastheadvantageofathousandtimesasmuchlifeexperienceasyoudo,itsabilitiesmayseemlesslikeintelli-gence.Butperhapsitdoesn’tmatterifAIfumbleswithsometasksifit’sgoodattherightcombinationofothers.
HintonandHopfieldhavebothspo-kenaboutthedangersofuncheckedAI.
DECEMBER2024|PHYSICSTODAY15
SEARCH&DISCOVERY
Amongtheirargumentsistheideathatoncemachinesbecomecapableofbreak-ingupgoalsintosubgoals,they’llquicklydeducethattheycanmakealmostanytaskeasierforthemselvesbyconsolidat-ingtheirownpower.Andbecauseneu-ralnetworksareoftentaskedwithwrit-ingcodeforothercomputers,stoppingthedamageisnotassimpleaspullingtheplugonasinglemachine.
“Therearealsoimminentrisksthatwe’refacingrightnow,”saysMehlig.“Therearecomputer-writtentextsandfakeimagesthatarebeingusedtotrickpeopleandinfluenceelections.Ithinkthatbytalkingaboutcomputerstakingovertheworld,peopletaketheimmi-nentdangerslessseriously.”
Whatcanphysicistsdo?
Muchoftheuneasestemsfromthefactthatsolittleisknownaboutwhatneu-ralnetworksarereallydoing:Howdobillionsofmatrixmultiplicationsadduptotheabilitytofindproteinstruc-turesorwritepoetry?“Peopleatthebigcompaniesaremoreinterestedinpro-ducingrevenue,notunderstanding,”saysDasSarma.“Understandingtakeslonger.Thejoboftheoristsistounder-standphenomena,andthisisahugephysicalphenomenon,waitingtobeunderstoodbyus.Physicistsshouldbeinterestedinthis.”
“It’shardnottobeexcitedbywhat’sgoingon,andit’shardnottonoticethatwedon’tunderstand,”saysBialek.“Ifyouwanttosaythatthingsareemergent,what’stheorderparameter,andwhatisitthat’semerged?Physicshasawayof
makingthatquestionmoreprecise.Willthatapproachyieldinsight?We’llsee.”
Fornow,thebiggestquestionsarestilloverwhelming.“Ifthereweresome-thingobviousthatcametomind,therewouldbeahordeofpeopletryingtosolveit,”saysHopfield.“Butthereisn’tahordeofpeopleworkingonthis,be-causenobodyknowswheretostart.”
Butafewsmaller-scalequestionsaremoretractable.Forexample,whydoesbackpropagationsoreliablyreducethenetworkerrortonearzero,ratherthangettingstuckinhigh-lyinglocalminimaliketheHopfieldnetworkdoes?“TherewasabeautifulpieceofworkonthisafewyearsagobySuryaGanguliatStan-ford,”saysSaraSolla,ofNorthwesternUniversity.“Hefoundthatmosthigh-lyingminimaarereallysaddlepoints:It’saminimuminmanydimensions,butthere’salwaysoneinwhichit’snot.Soifyoukeepkicking,youeventuallyfindyourwayout.”
Whenphysics-trained
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 質(zhì)量檢驗(yàn)員聘用合同格式
- 2024年度醫(yī)療器械代理注冊(cè)合同規(guī)范范本3篇
- 食品安全合同管理流程
- 2025年度五星級(jí)酒店VIP客戶住宿服務(wù)協(xié)議書3篇
- 能源檢測(cè)薪資結(jié)構(gòu)
- 語(yǔ)言培訓(xùn)中心外教勞動(dòng)合同樣本
- 2025奧菱達(dá)電梯有限企業(yè)電梯部件供應(yīng)及維修服務(wù)協(xié)議3篇
- 施工成本鋼結(jié)構(gòu)安全協(xié)議
- 投資入伙協(xié)議書范本
- 2025年度口腔醫(yī)療市場(chǎng)營(yíng)銷合作協(xié)議書3篇
- 家庭家教家風(fēng)·家庭美德·文明家庭主題班會(huì)
- 廬山云霧閱讀答案千姿百態(tài)
- 語(yǔ)文一年級(jí)上全冊(cè)教案
- 2023ESC急性肺栓塞診斷和管理指南中文完整版
- 高中地理學(xué)業(yè)水平考試知識(shí)點(diǎn)總結(jié)模版
- 騰訊績(jī)效考核方案設(shè)計(jì)
- ICU床頭交接班規(guī)范
- 鉆井泵安裝、操作規(guī)程及維護(hù)保養(yǎng)
- GB/T 6015-2021工業(yè)用丁二烯中微量二聚物和殘留抽提劑的測(cè)定氣相色譜法
- 無(wú)配重懸挑裝置吊籃施工方案
- (完整版)GJB150A三防試驗(yàn)(霉菌鹽霧濕熱)
評(píng)論
0/150
提交評(píng)論