山西省臨汾市2025屆高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第1頁
山西省臨汾市2025屆高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第2頁
山西省臨汾市2025屆高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第3頁
山西省臨汾市2025屆高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第4頁
山西省臨汾市2025屆高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山西省臨汾市2025屆高三第二次診斷性檢測數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.框圖與程序是解決數(shù)學(xué)問題的重要手段,實(shí)際生活中的一些問題在抽象為數(shù)學(xué)模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計(jì)算一組數(shù)據(jù)的方差,設(shè)計(jì)了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應(yīng)填入()A., B. C., D.,2.雙曲線C:(,)的離心率是3,焦點(diǎn)到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.3.已知一個(gè)三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.4.已知雙曲線:,,為其左、右焦點(diǎn),直線過右焦點(diǎn),與雙曲線的右支交于,兩點(diǎn),且點(diǎn)在軸上方,若,則直線的斜率為()A. B. C. D.5.若雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.6.網(wǎng)絡(luò)是一種先進(jìn)的高頻傳輸技術(shù),我國的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機(jī),現(xiàn)調(diào)查得到該款手機(jī)上市時(shí)間和市場占有率(單位:%)的幾組相關(guān)對應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測該款手機(jī)市場占有率的變化趨勢,則最早何時(shí)該款手機(jī)市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月7.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進(jìn)行分析,隨機(jī)抽取了200分到450分之間的2000名學(xué)生的成績,并根據(jù)這2000名學(xué)生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內(nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.16008.函數(shù)的圖象向右平移個(gè)單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的值為()A. B. C.2 D.9.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.10.甲乙丙丁四人中,甲說:我年紀(jì)最大,乙說:我年紀(jì)最大,丙說:乙年紀(jì)最大,丁說:我不是年紀(jì)最大的,若這四人中只有一個(gè)人說的是真話,則年紀(jì)最大的是()A.甲 B.乙 C.丙 D.丁11.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.12.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____.14.在三棱錐P-ABC中,,,,三個(gè)側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_________.15.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為______.16.若函數(shù)在區(qū)間上有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍有___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若恒成立,求實(shí)數(shù)的取值范圍;(2)若方程有兩個(gè)不同實(shí)根,,證明:.18.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).(1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);(2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.19.(12分)[選修45:不等式選講]已知都是正實(shí)數(shù),且,求證:.20.(12分)在直角坐標(biāo)系中,已知圓,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線平分圓M的周長.(1)求圓M的半徑和圓M的極坐標(biāo)方程;(2)過原點(diǎn)作兩條互相垂直的直線,其中與圓M交于O,A兩點(diǎn),與圓M交于O,B兩點(diǎn),求面積的最大值.21.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).22.(10分)已知拋物線:,點(diǎn)為拋物線的焦點(diǎn),焦點(diǎn)到直線的距離為,焦點(diǎn)到拋物線的準(zhǔn)線的距離為,且.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若軸上存在點(diǎn),過點(diǎn)的直線與拋物線相交于、兩點(diǎn),且為定值,求點(diǎn)的坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

依題意問題是,然后按直到型驗(yàn)證即可.【詳解】根據(jù)題意為了計(jì)算7個(gè)數(shù)的方差,即輸出的,觀察程序框圖可知,應(yīng)填入,,故選:A.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及轉(zhuǎn)化與化歸思想,屬于基礎(chǔ)題.2、A【解析】

根據(jù)焦點(diǎn)到漸近線的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點(diǎn),一條漸近線則點(diǎn)到的距離為,由所以,則又所以所以焦距為:故選:A【點(diǎn)睛】本題考查雙曲線漸近線方程,以及之間的關(guān)系,識(shí)記常用的結(jié)論:焦點(diǎn)到漸近線的距離為,屬基礎(chǔ)題.3、B【解析】

根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長方體,于是得到三棱錐的外接球即為長方體的外接球,進(jìn)而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個(gè)頂點(diǎn)位于長方體的四個(gè)頂點(diǎn),即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當(dāng)且僅當(dāng),時(shí),三棱錐外接球的表面積取得最小值為.故選B.【點(diǎn)睛】(1)解決關(guān)于外接球的問題的關(guān)鍵是抓住外接的特點(diǎn),即球心到多面體的頂點(diǎn)的距離都等于球的半徑,同時(shí)要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時(shí)可考慮通過構(gòu)造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.4、D【解析】

由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識(shí),屬于中檔題.5、C【解析】

求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點(diǎn)到直線的距離公式可得的范圍,再由離心率公式計(jì)算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點(diǎn)睛】本題考查雙曲線的離心率的范圍,注意運(yùn)用圓心到漸近線的距離不小于半徑,考查化簡整理的運(yùn)算能力,屬于中檔題.6、C【解析】

根據(jù)圖形,計(jì)算出,然后解不等式即可.【詳解】解:,點(diǎn)在直線上,令因?yàn)闄M軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點(diǎn)睛】考查如何確定線性回歸直線中的系數(shù)以及線性回歸方程的實(shí)際應(yīng)用,基礎(chǔ)題.7、B【解析】

由圖可列方程算得a,然后求出成績在內(nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績在內(nèi)的學(xué)生人數(shù).【詳解】由頻率和為1,得,解得,所以成績在內(nèi)的頻率,所以成績在內(nèi)的學(xué)生人數(shù).故選:B【點(diǎn)睛】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.8、C【解析】由函數(shù)的圖象向右平移個(gè)單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時(shí),取得最大值,即,,,當(dāng)時(shí),解得,故選C.點(diǎn)睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時(shí),取得最大值,求解可得實(shí)數(shù)的值.9、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點(diǎn)睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.10、C【解析】

分別假設(shè)甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個(gè)說的是真話,即可求得年紀(jì)最大者,即可求得答案.【詳解】①假設(shè)甲說的是真話,則年紀(jì)最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個(gè)人說的是真話,故甲說的不是真話,年紀(jì)最大的不是甲;②假設(shè)乙說的是真話,則年紀(jì)最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個(gè)人說的是真話,故乙說謊,年紀(jì)最大的也不是乙;③假設(shè)丙說的是真話,則年紀(jì)最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個(gè)人說的是真話,故丙在說謊,年紀(jì)最大的也不是乙;④假設(shè)丁說的是真話,則年紀(jì)最大的不是丁,而已知只有一個(gè)人說的是真話,那么甲也說謊,說明甲也不是年紀(jì)最大的,同時(shí)乙也說謊,說明乙也不是年紀(jì)最大的,年紀(jì)最大的只有一人,所以只有丙才是年紀(jì)最大的,故假設(shè)成立,年紀(jì)最大的是丙.綜上所述,年紀(jì)最大的是丙故選:C.【點(diǎn)睛】本題考查合情推理,解題時(shí)可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會(huì)發(fā)生,考查了分析能力和推理能力,屬于中檔題.11、D【解析】

根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯(cuò)誤;命題“:,”的否定為:,,故B錯(cuò)誤;為真,說明至少一個(gè)為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯(cuò)誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點(diǎn)睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.12、A【解析】

由復(fù)數(shù)除法求出,再由模的定義計(jì)算出模.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對原方程兩邊求導(dǎo),然后令求得表達(dá)式的值.【詳解】對等式兩邊求導(dǎo),得,令,則.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.14、【解析】

先確定頂點(diǎn)在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個(gè)面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設(shè)頂點(diǎn)在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個(gè)側(cè)面與底面所成的角均為,,,的高,,設(shè)內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.【點(diǎn)睛】本題考查三棱錐內(nèi)切球的表面積問題,考查學(xué)生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.15、2【解析】

根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點(diǎn)睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).16、或【解析】

函數(shù)的零點(diǎn)方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點(diǎn)方程在區(qū)間的根,所以,解得:,,因?yàn)楹瘮?shù)在區(qū)間上有且僅有一個(gè)零點(diǎn),所以或,即或.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,在求含絕對值方程時(shí),要注意對絕對值內(nèi)數(shù)的正負(fù)進(jìn)行討論.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】

(1)將原不等式轉(zhuǎn)化為,構(gòu)造函數(shù),求得的最大值即可;

(2)首先通過求導(dǎo)判斷的單調(diào)區(qū)間,考查兩根的取值范圍,再構(gòu)造函數(shù),將問題轉(zhuǎn)化為證明,探究在區(qū)間內(nèi)的最大值即可得證.【詳解】解:(1)由,即,即,令,則只需,,令,得,在上單調(diào)遞增,在上單調(diào)遞減,,的取值范圍是;(2)證明:不妨設(shè),當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,,當(dāng)時(shí),,,要證,即證,由在上單調(diào)遞增,只需證明,由,只需證明,令,,只需證明,易知,由,故,,從而在上單調(diào)遞增,由,故當(dāng)時(shí),,故,證畢.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,最值等,關(guān)鍵是要對問題進(jìn)行轉(zhuǎn)化,比如把恒成立問題轉(zhuǎn)化為最值問題,把根的個(gè)數(shù)問題轉(zhuǎn)化為圖像的交點(diǎn)個(gè)數(shù),進(jìn)而轉(zhuǎn)化為證明不等式的問題,屬難題.18、(1)點(diǎn)M的極坐標(biāo)為或(2)【解析】

(1)令,由此求得的值,進(jìn)而求得點(diǎn)的極坐標(biāo).(2)設(shè)出兩點(diǎn)的極坐標(biāo),利用勾股定理求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè)點(diǎn)M在極坐標(biāo)系中的坐標(biāo),由,得,∵∴或,所以點(diǎn)M的極坐標(biāo)為或(2)由題意可設(shè),.由,得,.故時(shí),的最大值為.【點(diǎn)睛】本小題主要考查極坐標(biāo)的求法,考查極坐標(biāo)下兩點(diǎn)間距離的計(jì)算以及距離最值的求法,屬于中檔題.19、見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點(diǎn):柯西不等式20、(1),(2)【解析】

先求出,再求圓的半徑和極坐標(biāo)方程;(2)設(shè)求出,,再求出得解.【詳解】(1)將化成直角坐標(biāo)方程,得則,故,則圓,即,所以圓M的半徑為.將圓M的方程化成極坐標(biāo)方程,得.即圓M的極坐標(biāo)方程為.(2)設(shè),則,用代替.可得,【點(diǎn)睛】本題主要考查直角坐標(biāo)和極坐標(biāo)的互化,考查極徑的計(jì)算,意在考查學(xué)生對這些知識(shí)的理解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論