![2024年智能煉金術:生成式人工智能如何徹底變革現(xiàn)代企業(yè)中的商業(yè)智能和分析白皮書_第1頁](http://file4.renrendoc.com/view14/M08/2C/33/wKhkGWdyoPmAaA_-AAIr0ZwcNZw095.jpg)
![2024年智能煉金術:生成式人工智能如何徹底變革現(xiàn)代企業(yè)中的商業(yè)智能和分析白皮書_第2頁](http://file4.renrendoc.com/view14/M08/2C/33/wKhkGWdyoPmAaA_-AAIr0ZwcNZw0952.jpg)
![2024年智能煉金術:生成式人工智能如何徹底變革現(xiàn)代企業(yè)中的商業(yè)智能和分析白皮書_第3頁](http://file4.renrendoc.com/view14/M08/2C/33/wKhkGWdyoPmAaA_-AAIr0ZwcNZw0953.jpg)
![2024年智能煉金術:生成式人工智能如何徹底變革現(xiàn)代企業(yè)中的商業(yè)智能和分析白皮書_第4頁](http://file4.renrendoc.com/view14/M08/2C/33/wKhkGWdyoPmAaA_-AAIr0ZwcNZw0954.jpg)
![2024年智能煉金術:生成式人工智能如何徹底變革現(xiàn)代企業(yè)中的商業(yè)智能和分析白皮書_第5頁](http://file4.renrendoc.com/view14/M08/2C/33/wKhkGWdyoPmAaA_-AAIr0ZwcNZw0955.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
TheAlchemyofIntelligence:
HowGenerativeAIcan
revolutionizeBusiness
IntelligenceandAnalyticsinModernEnterprises
TableofContent
Introduction 03
BusinessUser 04
Opportunities 04
Challenges 04
Recommendations 07
BusinessAnalyst 08
Opportunities 08
Productivity 08
ProgrammingforNon-Programmers 10
Insights 10
Beautification 11
Challenges 12
Usefulness 12
Trust 13
HumanErrorandDocumentation 14
Security 14
Recommendations 15
Test 15
Adopt 16
Train 16
DataAnalyst/CitizenDataScientist 17
Dylan’sTransformation 18
ArrivalofAIAgent 19
ATeamofAgentsEmerges 21
Summary 21
ITAdministrator 22
InfrastructureDemands 22
DataGovernanceandSecurity 23
Observations 24
SystemArchitect 25
Opportunities 25
Challenges 26
Recommendations 26
Summary 27
Conclusion 27
Authors 28
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA2
Introduction
Intherapidlyevolvinglandscapeoftechnology,businessesare
constantlysearchingforinnovativewaystostayaheadofthe
curve.OnesuchgroundbreakingadvancementisGenerativeAI,atechnologythathasthepotentialtoreshapethefutureofBusinessIntelligence(BI)andanalytics.Imagineaworldwheredataspeaksdirectlytoyou,whereyouranalyticstoolsnotonlyansweryour
queriesbutalsoanticipateyourneeds,providinginsightsyouhadn’tevenconsidered.ThisisthepromiseofGenerativeAI–atoolthattransformsrawdataintorich,actionableintelligence,empoweringbusinessestomakesmarter,fasterdecisions.
Thejourneythroughthiswhitepaperwilltakeyouintotheheartofthisrevolution.We’llexplorereal-worldscenarioswhere
GenerativeAIactsasacatalystforenhancedproductivity,sharperinsights,andmorebeautifuldatavisualizations.Frombusiness
userslikePeggySue,whoexperiencethemagicofAI-powered
chatbots,todatascientistslikeDylanDawson,wholeverage
generativemodelsforunprecedenteddataanalysis,thenarrativeunfoldstorevealbothopportunitiesandchallenges.Bytheendofthisexploration,youwillunderstandnotonlythetransformativepowerofGenerativeAIbutalsohowtoharnessiteffectively
withinyourenterprise.Forsimplicity,wehavebrokenthisintovariousreal-worldpersonas.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA3
BusinessUser
UsesdashboardsandreportsgeneratedbyBItoolstomakeinformedstrategicdecisions.
Businessusers,likePeggySue,aretheworkerbeesofany
corporatehive.Checkingnumbershere.Doingtheworkthat
needstodobedonethere.Buzz.Buzz.Buzz.Thissectionexplorestheuniqueopportunities,challengesandrecommendationsfor
otherslikePeggySue.
Opportunities
PeggySuewasthrilledtohavethischancetolaunchhercareerwithaglobalbeerdistributioncompanyknownforthequalityofitsbeersandforbeingarealhigh-techleaderintheindustry.ShehadmanycoursesattheUniversitysheattendedondashboardsandanalytics,andtheyreallypaidoffforherduringherfirst6
months.Neverdidadaygobywhenshedidn’tseepostsonherLinkedInfromthisgoodfriend,orthatfriend,ravingabouttheirexperienceswithsometypeofgenerativeaichatbots.
Shewasthrilledthedayshereceivedanemailstatingthat
herorganizationwouldbegettingachatbotalongsidetheir
dashboards.Suddenlythereitwas,andPeggySue’sheartwasallaflutterwiththepossibilities.
Everythingshereadusedphraseslike“Gamechanging”“makeslifesomucheasier”“willreplaceallworkerseverywhere”somepostersmightaswellhaveusedthewords“hocuspocusdominocus”
becauseitsoundedlikemagic.
PeggySue’smindwasracing“LookatthebeautifulinputboxwhereitsaysIcanaskanything.”UnfortunatelyforPeggySueanother
thoughtstruck,“Icanaskanything,butIhavenoideawhattoask”
Challenges
Whilemanyorganizationsrushtogetabotintothehandsof
businessusers,blankcanvasparalysiscantakeoverbecausetheyfocusedonthetechnology,andnottrainingtheirstaffhowtouseit.
EventuallyPeggySuebeganaskingthequestionsastheycame
tohermind“TellmethetotalsalesforourbeerinSouthAmerica.”
“WhichlocationissellingthemostofourPorters?”“Whichdivisionisn’tdoingwellfinancially?”Eachofherquestionsreceivedananswer.
Thechallengeforherwasthatmostanswersjustseemedwrong.Whenshedugintothedetailedrecordsinherdashboard,she
confirmedtheywerewrong.“Well,Ireckonthisthingisn’tverygoodatmath.WhydidtheygivethisthingtomeifIcan’taskittoaddupnumbers?”
Othertimesthefigureswereaboutmeasuresthatsheknewthecompanyhadmultiplewaysofcalculating.“Thisanswermayberightforoneofthemeasures,buttheanswerdoesn’texplainwhichcalculationmethodisevenused.Evenifitsaccurateforonemethod,Ihavenowayofknowingforsureit’sthemethodmybossexpectstosee.”
“Maybeit’stheresoIcanaskquestionsaboutthedashboarditself”
shethoughttoherself.Whichwasgoodbecausealthoughshehadreceived10minutesoftrainingfromafranticallybusytrainer,shedidn’tremembereverything.So,sheasked“HowdoIfigureout
whichdivisionisstrugglingonmydashboard?”
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA4
Whilethoughtprovoking,shewashopingforspecificinformationaboutthedashboardshewaslookingat.Afterafewquestionslikethisshegotalittleworriedthatperhapsmanagementwastrackingherquestionsandthatifshekeptaskingquestionslikethis,she
mightbereprimandedforhavingnotalreadylearnedeverythingaboutthedashboardevenafterthewhopping10minutesof
trainingshehadreceived.
Onedayasshewasreviewingsomequarterlyfiguresandhercolleagueswereoutoftheoffice,somethingstruckher:
“MaybeIshouldbeaskingthesametypeofquestionsInormallyaskthem.”So,shedid:“WhataresomereasonsthatcouldexplainwhywearesellingsomuchmoreBrownAlethanotherbeers?”
Atthatmomentalightbulbwentoff,andachoruswassinginginPeggySue’shead.Assheproceededwithheranalysis,shewasagaincuriousaboutthedata.Althoughsalesweresohighfor
BrownAle,theprofitsweren’t.
Shequicklytyped“Whataresomereasonswearenotmaking
muchprofitonbrownaleconsideringwesellsomuchofit?”intothehandylittle“AskAnything”inputboxandwasagainimpressedwiththeresponse.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA5
PeggySuewasinspiredbythispatternofaskingwhenshewas
puzzledaboutwhatcouldexplainthingsthatshedidn’tseeinthebarchartsandpiechartsandlinechartsonthescreen.Aftera
meetingonedaywheresheheardaboutacontestthecompanywashavingwhereanyemployeescouldmakesuggestions
abouthowtoincreasesalesshedecidedtogetreallyboldinherquestioning:“CanyoutellmeculturallywhywearesellingsomuchBrownAlewherewedoandwhatotherculturesaresimilarthatwecouldstartsellingitto?”
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA6
Recommendations
Whileonthecruiseshetookafterwinninghercompany’s
suggestioncontest,PeggySuehadmanychancestorecount
herexperiencestodatewithGenerativeAIinsidehercompany’sBusinessIntelligencetooltootherpassengers.
?Don’taskquestionsofanykindthatinvolvemath.
?Realanswerstorealbusinessproblemstypicallyinvolvecomplicatedbooleanlogicthatturnthemillionsofrows/columnsofdataintotruth,thatyourmodelmaynothaveaccessto.
?Don’taskforanswers,askforadvice.Answersimplyyouaredoneandwillact,butadviceimpliesyouwillaugmentthe
inputwithyourownknowledgethenact.
Onepassengershetalkedtooveroneofthosetalldrinkswith
fruitwedgesandanumbrellasaid“Wehave175differentBI
applicationsthatIworkwith.Whichoneofthemdoyouthinkis
therightonetostartusingwithoneofthoselargelanguagemodel
chatbotthingamajiggies?”PeggySuehadafewbitsofadviceforhim:
?TheoneusedbythegroupthatyouhaveprovidedsomeAILiteracytrainingtobeforehand.
?Theonethatyourbusinessuserspeekoverthecubiclewallsandchatwitheachotherthemostabout.
Storytellingasideforamoment...thebiggestrecommendationwecanofferforBusinessUsersistothinkofyourGenerativeAIchatbotslikeyouwouldanyothertrustedadvisorinyourlife.
?Theyaren’tgoingtodoyourworkforyou.
?Theywon’talwaysprovideadviceyouagreewith.
?Unlikeotheradvisorsinyourlife,theyarenevertoobusyforyoutoask,andtheynevergetoffendedwhenyouaskthe
samequestion10differentways.
?Youarestillultimatelyresponsibleforyourwork,soalwaysuseyourownintelligencetoaugmentanyadviceyoumayreceive.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA7
BusinessAnalyst
WorkscloselywithstakeholderstounderstandbusinessrequirementsandusesBItoolstocreatereports,dashboards,andvisualizations.
Let’srewindtheclocksixmonthspriorandlookathowPeggy
Sue’snewBIcopilotcametobe.SallySue,theunstoppable
business-analyst-turned-datascientist,hasbeenexperimentingwithGenerativeAIforhercodingtasks.Copilotsareexcellentatgeneratingcodeandsummarizinglargeamountsoftext,andherbusinessrecentlyadoptedaBItoolthathasacopilotbuiltintoit.“Wow!”shethought.“Icananalyzemydataandbuilddashboardsjustbyaskingquestions?”Sallywasthrilledattheidea–aswas
herCIO.Canyouimaginethenumberofquestionsthatcouldbequicklyansweredifpeoplecouldchatwiththeirdataanddashboards?
Beyondtheexcitement,Sallyrealizedthatthereareseveral
potentialrisks.She’staskedwithevaluatingthiscopilotfor
productionandsendingitovertobusinessuserslikePeggy
Sue.WhatkindsofquestionsmightPeggyask?Whatkindof
dashboardswouldpeoplebuildwiththis?Howdowecertifythisforproductionuse?Whataboutdatasecurity?Isthereavariablecosttousethis?ThereareanumberofquestionsthatcametoSally’smind.Shebrokeherquestionsdownintotwomainareas:opportunitiesandchallenges.
Opportunities
GenerativeAIbringsampleopportunitiesforworkingwithdataanddashboardsbyhavingaconversationwithit.Sally’sgoingtofocusonthreeofthesepotentialopportunities:
1.Productivity-CanGenerativeAIimprovetheproductivityofbothmyjuniorandseniorbusinessanalystswhenworkingwithaBItool?
2.Insights-Canmystakeholders“chatwiththeirdashboard”togetfastertimetoinsight?
3.Beautification–CanGenerativeAIhelpcreatebetterlookingbeautifuldashboardswithbest-practicesautomatically
builtin?
Let’sexplorethesethreeconcepts.
Productivity
Buildingdashboardsisnoeasytask.Therearemanyconsiderationsthatmustbeaccountedfor:
?Who’stheaudience?Anexecutive?Abusinessunit?Anotheranalyst?Yourself?
?Whatmetricsdotheycareabout?
?Doesthedatasupportthosemetrics?
?Howoftenwilltheybeviewingthedashboard?
?Whatfollow-upquestionsdoyouanticipatethemasking?
?Doyouneedtosplitthisintomultipledashboards?
Theanswerstothesequestionswillgreatlychangethedesignofthedashboard.Understandingtheoverallbusinessproblemandhowthedatacansupportthosemetricsis,firstandforemost,
whatmustbedone.Forabrand-newbusinessanalyst,thisis
tough.Thismaymeansendingoutalotofemailstryingtogetanunderstandingofwhatmetricspeoplecareabout,wherethatdatalives,andwhatdocumentationtoread.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA8
SallySue’sBIcopilotenableshertouploaddocumentationto
createagoverned,customcopilotcapableofansweringspecificquestionsmoreeffectively.Herorganization’sinternalwiki,whichhasimproveddocumentationpracticesovertime,servesasa
primaryresource.However,manyanswerstobusinessquestionsremainburiedindecade-oldemailsandtribalknowledge.
Duringhertestingphase,Sallytakesadvantageofthecontent
inthiswiki.Largelanguagemodelsexcelatparsingand
summarizingvastamountsoftext:themorequalityandaccuratedocumentationsheprovides,thebetterthecopilotwillperform.Sallypoursthroughthewiki,confirmsitsaccuracybycross-
checkingwithotherdepartments,scrapescurateddocumentation,carefullycleansit,andformatsitintoaJSONfilewithinformation
suchasthetitle,sectionname,andtext.ThisJSONisthen
uploadedintotheBItool’scopilotwherethesoftwarehandlestherest.
Customizingthecopilotwiththiscomprehensiveandaccurate
documentationenhancesitsabilitytoanswerbusinessquestions.Forexample,itcannowprovidedetailedexplanationsonlegacyprocessesthatareonlydocumentedinthewiki.Thisimprovementbooststheproductivityofjuniorandnewcolleagues,whousethecopilotforcreatingdashboardswithoutneedingtosiftthrough
extensivehistoricaldata.Notethatachievingthesebenefits
involvesongoingeffortstomaintainandupdatetheAImodeltoreflectcurrentbusinessneedsanddataqualitystandards.
Considerthisexample:
SallySuehasloadedinaknowledgebasethatdescribestheTTCKPI.Throughouttheoffice,everyonetalksaboutTTC–it’sthe
mostimportantmetricforpredictingprofitability.Butwhatdoes
TTCactuallymean?Intheknowledgebase,TTCisdefinedas“TotalTimetoCompletion.”Thelowerthisnumberis,thefasterbeer
canbottledanddistributed.ConsiderascenariowhereajuniorbusinessanalystistaskedwithcreatingadashboardaboutTTC.ThatjunioranalysthasthedatawhichholdsavariablecalledTTC.Theysimplyasktheircopilotthevaguequestion:
“Explaintomewhat’sinthedata.”Thecopilotthenreturns:
Yourdataappearstocontainanumberofbeerproductsproducedovertimeaswellasattributesaboutthoseproducts,suchas
weight,size,andcosttoproduce.TheTotalTimetoCompletion(TTC)isalsoincludedasoneoftheseattributesandisthe
business’smostimportantmetricbecauseitishighlynegatively
correlatedwithrevenue.ThelowerTTCis,themorerevenuetendstoincrease.Herearesomesuggestionsforvisualizingthedata:
Thekeythinghereisthatthecopilot:
?KnowswhatTTCisandcandecodewhattheacronymmeans
?KnowsthatTTCisimportantforrevenue
?Givesinitialvisualizationsuggestions
RatherthanrandomlyaddingvisualsintoaBItool,thecopilotis
givingtheuserastrongstartingpointandhelpsreducetheblankcanvaseffect.SallySueisalltoofamiliarwiththeblankcanvas
effect:it’sthefeelingyougetwhenyou’retaskedwithstartinga
brand-newpresentation,paper,ordashboard.You’represented
withablankcanvas,whichcanbeeitheragreatthingthatinspirescreativity,oraterrifyingthingthatsuccumbsyourbraintothe
dreadedwriter’sblock.AgoodBIcopilotcan,andshould,eliminatethiseffectandgivetheuseragoodstartingpoint.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA9
StartingfromscratchcanbeadifficulttaskforeventhemostseasonedBIveterans
Somequestionstheusermightaskare:
?“GivemesomesuggestedvisualizationsforTTC.”
?“BuildmeastarterdashboardforaCEOwhocaresaboutrevenueasitrelatestoTTC.Includeothermetricsthatmaybeusefultoknow.”
?“Modifymydashboardsothatit’smoreaboutTTCovertimeratherthanTTCasawhole.”
SallySuetriesallthesequestionsandevaluateshowtheBItool
does.Ifit’swell-tuned,itshouldgivestrongstartingvisualizationsandmetrics.Shefindsthatitdoesanokayjobcreatingastarterdashboard.It’snotperfectandsomeoftheKPIsseemabitoff,
butit’scertainlynotbad,either.Thecopilotcoulddowithalittleimprovementfromuserfeedbackandadditionaldocumentation,butshe’llgettothatlater.Thevisualizationsitbuildsinitscurrentstateareatleastgoodforeditingandspurringnewideas–exactlywhatitshouldbedoing.
ProgrammingforNon-Programmers
Most,ifnotall,BItoolshavesomesortofprogrammingor
scriptinglanguagebuiltintothemsothatuniquemetricscanbe
createdonthefly.Thisiscrucialforcreatinghighlycustomized
dashboardsandgeneratingtheneededmetricsdirectlyinthe
toolwithoutthetedioustaskofleavingit,usinganothertool
orlanguage,thenreloadingthedata.SallySueiswell-versedin
programming,butherbusinessusersarenot–infact,she’sluckyiftheyknowSQL.Timeandtimeagainshegetsquestionsfromherusersonhowtocreatesomeofthemostbasiccalculations:True/Falseflags,summationsovertime,summationsbygroups,nestedcalculationsandmore.Sallynoticedthathercopilotincludesa
placetodescribecalculationstogeneratethem.Intrigued,shetriedasimpleprompt:
“AverageTTCbyregion.”
ThecopilotreturnsafewoptionsofaverageTTCgroupedby
region,allvariableswithinthedata.Thecodeitreturnsiswell-
formatted,commented,andevenincludesafewexamplevaluesforverification.Sallyisextremelyhappytoseethis,asitgivesherbusinessusersasignificantlyeasierwaytocreatemetricsand
customcalculations.Shesuspectsthatthiswillgreatlyreducetheamountofquestionsthatshegetsandimprovethespeedand
accuracyofdashboardcreation.
Insights
Picturesareworthathousandwords,andadashboardismade
ofmanyinteractivepictures.Peoplelovedashboardsbecause,
whendoneright,theycanproduceawealthofinformationina
compactspace.Ifyou’reabusyexecutive,youmighthaveaccesstodozensofdashboards.Somedashboardsarelargerthanothers,andsomerequireyoutoclicktoaspecificlocationandhighlight
specificpartsofthedashboardtogettheinsightsyouneed.
Sometimesyoudon’thavethetimenorthepatiencetogothroughthatdashboardtogetwhatyouneed.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA10
Whatifyoucouldsimplyaskforit?
Whileplayingaroundwiththisnewtool,SallySuenoticedthat
hercopilotwasavailablenotjustfordashboardcreators,but
forreportviewersaswell.Shecouldaskquestionsaboutthe
dashboardtofigureoutwhatsheshouldreallyknowin30secondsfromthisseaofinformation.ShebuiltabasicTTCdashboardthatshewouldexpectexecutivestolookat.Itusedcommonmetrics
thatsheensuredwereapartofthedocumentationsheuploaded,andtherewasnocomplexmath.Sheincludedsomevisualslike
timeseriesgraphsofaverageTTCovertime,thecurrentaverageTTC,averageTTCfromthedayprior,andaverageTTCacross
variousregions.Sheaskedthecopilot:
“Givemethe3mostimportantthingsIshouldknowfromthisdashboard.”
Thecopilotreturned:
ThisdashboardappearstodisplaytheaverageTTCmetricovertimeandacrossregions.Thesearethemostimportantthingstoknowfromthisdashboard:
1.AverageTTCis3.5minutesandhasincreasedby30s(+20%)comparedtoyesterday.Thismayaffectrevenue.
2.AverageTTChasbeentrendingdownsinceJan2024,
buttherewasatemporaryspikeonMar23rdwhereTTCincreasedbynearly90s,butthenreturnedtonormalthefollowingday.
3.TheSoutheastregionhadthehighestincreaseinTTConMar23rd,contributingabout75%totheoverallriseinTTConthatday
SallySuethenasked,
“TellmethedriversofTTCfortheSoutheastregion.”Thecopilotreturned:
ThethreemostimportantdriversofTTCfortheSoutheastregionare:
?Bottlesavailable:thismetricappearstoberelatedtothe
numberofbottlesthatareavailableforproductiononadailybasis.Thisnumberrangesfrom0to10,000andispositivelyrelatedtoTTC.
?Totalworkers:thismetricindicatesthenumberofworkersonthewarehouseflooratthetimeandrangesfrom3to24.
?Unittemperature:thismetricindicatesthetemperatureofeachproductionunitandrangesfrom100Fto230F.Unitsover175Fareconsideredoverheating.
Sallywasimpressedwiththeperformanceofthecopilottograbinsightsfromthedashboard,showingthingsthatarebothdirectlyshownwithinthedashboardandthingsthatmaybehidden;
however,thisisjustfromherinitialtesting.Whileitcertainly
lookedconvincing,shestillneedstospendtimeverifyingtheaccuracyoftheseresultswhichsheplansondoinginafocusedtrustandsecuritytest.
Beautification
Sallyknowsalltoowellhoweasyitistodrag-and-droptobuild
dashboards.ModernBItoolsgenerallyhaveanoptimalsetof
colorsandsettingsturnedonforyoubydefault.Thesetendto
workwellandareusuallysetbyUXtoenablepeopletocreate
decent-lookingdashboardswithoutneedingtothinkasmuch
abouttherightcolorsorgraphsettings.WhatSallySuealsoknewishoweasyitistobuildbaddashboards.
Whatisabaddashboard?You’veprobablyencounteredone.Toomanymetrics.Numberseverywhere.Dozensofpages.Somanygraphscrammedintoasinglepagethanitbringsan8Kmonitortoitsknees.Colorsthatmakeyouwanttowatchblack-and-whitemoviesjusttorelaxyoureyeballs.You’vemostcertainlyseenabaddashboard.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA11
Whatisevenhappeninghere?
Nobodygoesoutoftheirwaytobuildabaddashboard–likethatever-growingjunkdrawerinyourkitchen,itjusthappensover
time.Onenewmetrichere.Onenewgraphthere.OnenewpagefortheaccountantoverinBusinessUnit274.Itgrowsandgrows.Themoreeyesareonadashboard,themorelikelyitistogetthisway.GenerativeAIhasthepotentialtocurbthis.
AnygoodcopilotinaBItoolwillhavebeentrainedon
dashboardingbestpractices.AsSallywenttobuilddashboards,shepaidspecialattentiontothegraphsitcreated:
?Didtheymakesense?
?Arethecolorsappropriate?
?Aretheretitleswheretheyshouldbe?
?Diditcreatetheoptimalnumberofpages?
?Diditfollowbestpracticesformetricsonasinglepage?
?Isitaccessible?
AgoodBIcopilotfollowsdashboardingbestpracticesandgivesastrongstartingpoint
Thankfully,hercopilotfollowedallthesebestpracticeswhen
buildingadashboard,andevenhadtheabilitytogivesuggestionsonhowtoimproveexistingdashboards.Itseemsthatthe
designersofthiscopilotthoughtwellaboutthis.
Challenges
Overall,SallywashappywiththeBIcopilot’scapabilities.Hertestsweresimple,butsheneededawideraudiencetoreallytestitout.Assherolledoutteststoherotherbusinessanalysts,shehad
threeissuesinmind:
?Howusefulisthis?
?Canitbetrusted?
?Isitsecure?
Usefulness
ABIcopilotisanoptionalfeature,firstandforemost.Itsgoalistoassistyoutoexploreyourdataandbuilddashboardsfaster.
THEALCHEMYOFINTELLIGENCE:HOWGENERATIVEAICANREVOLUTIONIZEBUSINESSINTELLIGENCEANDANALYTICSINMODERNENTERPRISES|LFAI&DATA12
Sallyknewthat,likeanyotheroptionalfeature,itwillgocompletely
unusedifit’snotactuallyhelpful.Whensherolledoutthecopilottomorebusinessanalysts,sheaskedthemtopaycloseattentiontothefollowingquestion:doesthisfeaturemakebuilding
dashboardsfasterforyou,orisitafrustratinghindrance?
Ifyoufindyourselfgoingbacktothedrag-and-dropmethod,youprobablyfindthecopilottonotbeveryhelpful.Ifyouavoidthecopilotbecauseyoucan’ttrustitsanswers,thenit’snotagreat
copilot.Copilotsshouldbeconsistentintheiranswersandhavebestpracticesbuiltin.Ifit’screatinguselessdashboardsthat
aren’tevengoodforediting,thenthecopilothasfaileditsgoal.
Thecopilotshouldhelpreducetheblankcanvaseffect.Editingis,ingeneral,fasterthanstartingfromablankcanvas.Ifeditingis
harderthandragginganddropping,thenthecopilotisnotagoodfit.
Considercreatingasurveyorevenaworkshopforagroupof
users.Givethemsomesimpledatatoworkwithandaskthemtobuildadashboardoutofitusingthecopilotinalimitedamountoftime.Thedatashouldbeneutralandideallyhasnotbeen
seenbyanybody,butalsoeasytounderstand.Onegreatway
tofinddatalikethisistosearchforopendatasetsfrom
https://
.
Splitthegroupintotwo:onewhichhasaccesstothecopilot,andonewhichdoesn’t.Askthegroupwhodoeshavethecopilottouseittotheiradvantageto
createdashboardsoutofthedata.Aftertimeisup,allthepeopleintheworkshopshouldsendtheirdashboardstoyouforreview.Comparewhichoneswerebetter.Thisissubjective,soconsiderrecruitingotherstovote.
SendasurveyouttothegroupwhohadaccesstothegenerativeBIdashboard.Askthemquestionssuchas:
?Didyouusethenewcopilottobuildyourdashboard?
?Didyoufindithelpful?Ifso,howdidyouuseit?
?Didyougiveupusingitatanypoint?Ifso,why?
?Ifyoudidnotfindithelpful,whatdidyounotlikeaboutit?
?Ifyoudidnotuseit,whynot?
?Didyoutrusttheresultsthatitgaveyou?
?Wereanyresultsinaccurate?Ifso,whatwerethey?
?Wouldyouusethecopilotagaininthefuturetobuilddashboards?
?Onascaleof1to10,howdoyouratethecopilotoverall?
Performinganexerciselikethiscouldhelpidentifytheusefulnessofthecopilotandgiveyourselfsomeobjectivedatathathelpsyoudeterminewhetheryoushouldmoveforwardwithitsadoption.
Trust
Copi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場施工防生物安全事故制度
- 小學生心理健康教育的校本課程設計研究
- DB4404T 72-2024電梯維修保養(yǎng)服務安全規(guī)范
- 不服合作合同爭議仲裁起訴狀范本
- 個人股權轉讓合作合同模板
- 兩人合伙創(chuàng)業(yè)合同范本
- 個人股權轉讓合同簡單范文
- 二手房買賣合同簡易版
- 個人公寓租賃合同范本
- 產(chǎn)學研一體化碩士專班合作協(xié)議合同
- 行業(yè)會計比較(第三版)PPT完整全套教學課件
- 值機業(yè)務與行李運輸實務(第3版)高職PPT完整全套教學課件
- 高考英語語法填空專項訓練(含解析)
- 42式太極劍劍譜及動作說明(吳阿敏)
- 部編版語文小學五年級下冊第一單元集體備課(教材解讀)
- GB/T 10095.1-2022圓柱齒輪ISO齒面公差分級制第1部分:齒面偏差的定義和允許值
- 仁愛英語九年級下冊單詞表(中英文)
- 危險化學品企業(yè)安全生產(chǎn)標準化課件
- 巨鹿二中骨干教師個人工作業(yè)績材料
- 《美的歷程》導讀課件
- 心電圖 (史上最完美)課件
評論
0/150
提交評論