版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省威海市乳山市2025屆高考數(shù)學(xué)必刷試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,且在上是單調(diào)函數(shù),則下列說法正確的是()A. B.C.函數(shù)在上單調(diào)遞減 D.函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱2.已知,則()A.2 B. C. D.33.已知復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.4.?dāng)?shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:①曲線C經(jīng)過5個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線C上任意一點(diǎn)到坐標(biāo)原點(diǎn)O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號(hào)是()A.①③ B.②④ C.①②③ D.②③④5.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件6.一個(gè)四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側(cè)視圖),則這個(gè)四棱錐中最最長(zhǎng)棱的長(zhǎng)度是().A. B. C. D.7.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.8.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.9.已知點(diǎn),是函數(shù)的函數(shù)圖像上的任意兩點(diǎn),且在點(diǎn)處的切線與直線AB平行,則()A.,b為任意非零實(shí)數(shù) B.,a為任意非零實(shí)數(shù)C.a(chǎn)、b均為任意實(shí)數(shù) D.不存在滿足條件的實(shí)數(shù)a,b10.等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,有下列說法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個(gè)位置,使得;(3)設(shè)二面角的平面角為,則;(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,則點(diǎn)P的軌跡為橢圓.其中,正確說法的個(gè)數(shù)是()A.1 B.2 C.3 D.411.已知復(fù)數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.12.現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),則乙、丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的角所對(duì)的邊分別為,且,,若,則的值為__________.14.已知,記,則的展開式中各項(xiàng)系數(shù)和為__________.15.定義在上的偶函數(shù)滿足,且,當(dāng)時(shí),.已知方程在區(qū)間上所有的實(shí)數(shù)根之和為.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則__________,__________.16.若,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了加強(qiáng)環(huán)保知識(shí)的宣傳,某學(xué)校組織了垃圾分類知識(shí)竟賽活動(dòng).活動(dòng)設(shè)置了四個(gè)箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機(jī)抽取張,按照自己的判斷將每張卡片放入對(duì)應(yīng)的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯(cuò)誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機(jī)抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機(jī)選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學(xué)期望.18.(12分)已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實(shí)數(shù)的值.19.(12分)已知函數(shù).(1)若,求不等式的解集;(2)已知,若對(duì)于任意恒成立,求的取值范圍.20.(12分)如圖,在四棱錐中,平面,,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.21.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.22.(10分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點(diǎn)P在底面上的射影為的中點(diǎn)G,點(diǎn)E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)函數(shù),在上是單調(diào)函數(shù),確定,然后一一驗(yàn)證,A.若,則,由,得,但.B.由,,確定,再求解驗(yàn)證.C.利用整體法根據(jù)正弦函數(shù)的單調(diào)性判斷.D.計(jì)算是否為0.【詳解】因?yàn)楹瘮?shù),在上是單調(diào)函數(shù),所以,即,所以,若,則,又因?yàn)?,即,解得,而,故A錯(cuò)誤.由,不妨令,得由,得或當(dāng)時(shí),,不合題意.當(dāng)時(shí),,此時(shí)所以,故B正確.因?yàn)?,函?shù),在上是單調(diào)遞增,故C錯(cuò)誤.,故D錯(cuò)誤.故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用,還考查了運(yùn)算求解的能力,屬于較難的題.2、A【解析】
利用分段函數(shù)的性質(zhì)逐步求解即可得答案.【詳解】,;;故選:.【點(diǎn)睛】本題考查了函數(shù)值的求法,考查對(duì)數(shù)的運(yùn)算和對(duì)數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題,解題時(shí)注意函數(shù)性質(zhì)的合理應(yīng)用.3、D【解析】
首先求得,然后根據(jù)復(fù)數(shù)乘法運(yùn)算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運(yùn)算對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】由題意知復(fù)數(shù),則,所以A選項(xiàng)不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項(xiàng)不正確;,所以C選項(xiàng)不正確;,所以D選項(xiàng)正確.故選:D【點(diǎn)睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運(yùn)算等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想.4、B【解析】
利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點(diǎn),,,,則①和③都錯(cuò)誤;由,得④正確.故選:B.【點(diǎn)睛】本題考查曲線與方程的應(yīng)用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.5、A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.6、A【解析】
作出其直觀圖,然后結(jié)合數(shù)據(jù)根據(jù)勾股定定理計(jì)算每一條棱長(zhǎng)即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個(gè)四棱錐中最長(zhǎng)棱的長(zhǎng)度是.故選.【點(diǎn)睛】本題考查了四棱錐的三視圖的有關(guān)計(jì)算,正確還原直觀圖是解題關(guān)鍵,屬于基礎(chǔ)題.7、D【解析】
依題意,設(shè),由,得,再一一驗(yàn)證.【詳解】設(shè),因?yàn)?,所以,?jīng)驗(yàn)證不滿足,故選:D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.8、B【解析】
根據(jù),可知命題的真假,然后對(duì)取值,可得命題的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對(duì)命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點(diǎn)睛】本題主要考查對(duì)命題真假的判斷以及真值表的應(yīng)用,識(shí)記真值表,屬基礎(chǔ)題.9、A【解析】
求得的導(dǎo)函數(shù),結(jié)合兩點(diǎn)斜率公式和兩直線平行的條件:斜率相等,化簡(jiǎn)可得,為任意非零實(shí)數(shù).【詳解】依題意,在點(diǎn)處的切線與直線AB平行,即有,所以,由于對(duì)任意上式都成立,可得,為非零實(shí)數(shù).故選:A【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用,求切線的斜率,考查兩點(diǎn)的斜率公式,以及化簡(jiǎn)運(yùn)算能力,屬于中檔題.10、C【解析】
解:對(duì)于(1),當(dāng)CD⊥平面ABE,且E在AB的右上方時(shí),E到平面BCD的距離最大,當(dāng)CD⊥平面ABE,且E在AB的左下方時(shí),E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對(duì)于(2),連接DE,若存在某個(gè)位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進(jìn)一步可得AE=DE,此時(shí)E﹣ABD為正三棱錐,故(2)正確;對(duì)于(3),取AB中點(diǎn)O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對(duì)于(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,P到BC的距離為:dP﹣BC,因?yàn)椋?,所以點(diǎn)P的軌跡為橢圓.(4)正確.故選:C.點(diǎn)睛:該題考查的是有關(guān)多面體和旋轉(zhuǎn)體對(duì)應(yīng)的特征,以幾何體為載體,考查相關(guān)的空間關(guān)系,在解題的過程中,需要認(rèn)真分析,得到結(jié)果,注意對(duì)知識(shí)點(diǎn)的靈活運(yùn)用.11、A【解析】
利用復(fù)數(shù)的乘法、除法運(yùn)算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.12、B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,利用古典概型及其概率的計(jì)算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,所以乙丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為,故選B.【點(diǎn)睛】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計(jì)算問題,其中解答中合理應(yīng)用排列、組合的知識(shí)求得基本事件的總數(shù)和所求事件所包含的基本事件的個(gè)數(shù),利用古典概型及其概率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先利用余弦定理求出,再用正弦定理求出并把轉(zhuǎn)化為與邊有關(guān)的等式,結(jié)合可求的值.【詳解】因?yàn)椋?,因?yàn)椋?由正弦定理可得三角形外接圓的半徑滿足,所以即.因?yàn)?,解得或(舍?故答案為:.【點(diǎn)睛】本題考查正弦定理、余弦定理在解三角形中的應(yīng)用,注意結(jié)合求解目標(biāo)對(duì)所得的方程組變形整合后整體求解,本題屬于中檔題.14、【解析】
根據(jù)定積分的計(jì)算,得到,令,求得,即可得到答案.【詳解】根據(jù)定積分的計(jì)算,可得,令,則,即的展開式中各項(xiàng)系數(shù)和為.【點(diǎn)睛】本題主要考查了定積分的應(yīng)用,以及二項(xiàng)式定理的應(yīng)用,其中解答中根據(jù)定積分的計(jì)算和二項(xiàng)式定理求得的表示是解答本題的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.15、24【解析】
根據(jù)函數(shù)為偶函數(shù)且,所以的周期為,的實(shí)數(shù)根是函數(shù)和函數(shù)的圖象的交點(diǎn)的橫坐標(biāo),在平面直角坐標(biāo)系中畫出函數(shù)圖象,根據(jù)函數(shù)的對(duì)稱性可得所有實(shí)數(shù)根的和為,從而可得參數(shù)的值,最后求出函數(shù)的解析式,代入求值即可.【詳解】解:因?yàn)闉榕己瘮?shù)且,所以的周期為.因?yàn)闀r(shí),,所以可作出在區(qū)間上的圖象,而方程的實(shí)數(shù)根是函數(shù)和函數(shù)的圖象的交點(diǎn)的橫坐標(biāo),結(jié)合函數(shù)和函數(shù)在區(qū)間上的簡(jiǎn)圖,可知兩個(gè)函數(shù)的圖象在區(qū)間上有六個(gè)交點(diǎn).由圖象的對(duì)稱性可知,此六個(gè)交點(diǎn)的橫坐標(biāo)之和為,所以,故.因?yàn)?,所?故.故答案為:;【點(diǎn)睛】本題考查函數(shù)的奇偶性、周期性、對(duì)稱性的應(yīng)用,函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.16、【解析】
因?yàn)椋?因?yàn)?,所以,又,所以,所?.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)所抽取的人中得分落在組和內(nèi)的人數(shù)分別為人、人;(2)分布列見解析,.【解析】
(1)將分別乘以區(qū)間、對(duì)應(yīng)的矩形面積可得出結(jié)果;(2)由題可知,隨機(jī)變量的可能取值為、、,利用超幾何分布概率公式計(jì)算出隨機(jī)變量在不同取值下的概率,可得出隨機(jī)變量的分布列,并由此計(jì)算出隨機(jī)變量的數(shù)學(xué)期望值.【詳解】(1)由題意知,所抽取的人中得分落在組的人數(shù)有(人),得分落在組的人數(shù)有(人).因此,所抽取的人中得分落在組的人數(shù)有人,得分落在組的人數(shù)有人;(2)由題意可知,隨機(jī)變量的所有可能取值為、、,,,,所以,隨機(jī)變量的分布列為:所以,隨機(jī)變量的期望為.【點(diǎn)睛】本題考查利用頻率分布直方圖計(jì)算頻數(shù),同時(shí)也考查了離散型隨機(jī)變量分布列與數(shù)學(xué)期望的求解,考查計(jì)算能力,屬于基礎(chǔ)題.18、【解析】
將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,直線的參數(shù)方程化為普通方程,再根據(jù)直線與圓相切,利用圓心到直線的距離等于半徑,即可求實(shí)數(shù)的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點(diǎn)睛】本題重點(diǎn)考查方程的互化,考查直線與圓的位置關(guān)系,解題的關(guān)鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.19、(1)或;(2).【解析】
(1)時(shí),分類討論,去掉絕對(duì)值,分類討論解不等式.(2)時(shí),分類討論去絕對(duì)值,得到解析式,由函數(shù)的單調(diào)性可得的最小值,通過恒成立問題,得到關(guān)于的不等式,得到的取值范圍.【詳解】(1)因?yàn)椋?,所以不等式等價(jià)于或或,解得或.所以不等式的解集為或.(2)因?yàn)?,所以,根?jù)函數(shù)的單調(diào)性可知函數(shù)的最小值為,因?yàn)楹愠闪ⅲ?,解?所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查分類討論去絕對(duì)值,分段函數(shù)求最值,不等式恒成立問題,屬于中檔題.20、(1)見解析;(2)【解析】
(1)取的中點(diǎn),連接,根據(jù)中位線的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線為軸建立空間直角坐標(biāo)系,再求得平面的法向量與平面的法向量進(jìn)而求得二面角的余弦值即可.【詳解】(1)證明:如圖,取的中點(diǎn),連接.又為的中點(diǎn),則是的中位線.所以且.又且,所以且.所以四邊形是平行四邊形.所以.因?yàn)?為的中點(diǎn),所以.因?yàn)?所以.因?yàn)槠矫?所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知兩兩互相垂直,所以分別以所在的直線為軸建立如圖所示的空間直角坐標(biāo)系:因?yàn)?所以點(diǎn).則.設(shè)平面的法向量為,由,得,令,得平面的一個(gè)法向量為;顯然平面的一個(gè)法向量為;設(shè)二面角的大小為,則.故二面角的余弦值是.【點(diǎn)睛】本題主要考查了線面垂直的證明以及建立空間直角坐標(biāo)系求解二面角的問題,需要用到線線垂直與線面垂直的轉(zhuǎn)換以及法向量的求法等.屬于中檔題.21、(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 注塑委托加工合同范本
- 配電房施工信息化管理措施
- 與其它施工單位的協(xié)調(diào)、配合措施
- 屋面卷材防水施工技術(shù)措施
- 雨季施工現(xiàn)場(chǎng)衛(wèi)生防疫方案
- 市政污水管網(wǎng)日常維護(hù)方案
- 雙創(chuàng)雙爭(zhēng)實(shí)施方案樣本(2篇)
- 發(fā)電機(jī)組安全操作規(guī)程及維護(hù)保養(yǎng)(2篇)
- 樓道安全管理制度(2篇)
- 竣工驗(yàn)收階段服務(wù)配合保障措施
- 2024年《大學(xué)語(yǔ)文》期末考試復(fù)習(xí)題庫(kù)(含答案)
- 電纜及電纜橋架安裝施工方案
- 跨部門溝通與協(xié)調(diào)課件
- 醫(yī)生進(jìn)修報(bào)告ppt通用模板
- 2022年版《義務(wù)教育信息科技技術(shù)新課程標(biāo)準(zhǔn)》試題與答案
- 汽車OTS工程樣件認(rèn)可流程課件
- 明細(xì)賬(三欄式)模板
- 三年級(jí)數(shù)學(xué)思維訓(xùn)練【奧數(shù)舉一反三】附部分答案解析
- 2023年數(shù)學(xué)競(jìng)賽AMC8真題A卷(含答案)
- 審計(jì)控制活動(dòng)方案
評(píng)論
0/150
提交評(píng)論