版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆黃石市重點中學高三下學期聯(lián)考數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關于對稱,則的值為()A.2 B.3 C.4 D.2.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.3.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.4.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)5.函數(shù)的圖象大致是()A. B.C. D.6.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:①越小,則國民分配越公平;②設勞倫茨曲線對應的函數(shù)為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④7.如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點,M為棱AD的中點,設P,Q為底面ABCD內的兩個動點,滿足平面EFG,,則的最小值為()A. B. C. D.8.的展開式中的常數(shù)項為()A.-60 B.240 C.-80 D.1809.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.610.以下關于的命題,正確的是A.函數(shù)在區(qū)間上單調遞增B.直線需是函數(shù)圖象的一條對稱軸C.點是函數(shù)圖象的一個對稱中心D.將函數(shù)圖象向左平移需個單位,可得到的圖象11.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?12.已知定義在上的函數(shù)滿足,且當時,,則方程的最小實根的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知邊長為的菱形中,,現(xiàn)沿對角線折起,使得二面角為,此時點,,,在同一個球面上,則該球的表面積為________.14.已知,,求____________.15.已知關于的方程在區(qū)間上恰有兩個解,則實數(shù)的取值范圍是________16.若關于的不等式在時恒成立,則實數(shù)的取值范圍是_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內角,,所對的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.18.(12分)若養(yǎng)殖場每個月生豬的死亡率不超過,則該養(yǎng)殖場考核為合格,該養(yǎng)殖場在2019年1月到8月養(yǎng)殖生豬的相關數(shù)據(jù)如下表所示:月份1月2月3月4月5月6月7月8月月養(yǎng)殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數(shù)/只293749537798126145(1)從該養(yǎng)殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤y(十萬元)關于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).(3)預計在今后的養(yǎng)殖中,月利潤與月養(yǎng)殖量仍然服從(2)中的關系,若9月份的養(yǎng)殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數(shù)據(jù):.19.(12分)已知,(其中).(1)求;(2)求證:當時,.20.(12分)已知中,內角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設,求的取值范圍.21.(12分)已知橢圓:的離心率為,直線:與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點,過點的直線交橢圓于,兩點,直線,分別交直線于,兩點.(1)求橢圓的方程;(2)以線段為直徑的圓是否過定點?若是,寫出所有定點的坐標;若不是,請說明理由.22.(10分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
因為將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,可得,結合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,又和的圖象都關于對稱,由,得,,即,又,.故選:B.【點睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對稱求參數(shù),解題關鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計算能力,屬于基礎題.2、D【解析】
設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.3、D【解析】
根據(jù)線面垂直的性質,可知;結合即可證明,進而求得.由線段關系及平面向量數(shù)量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質應用,平面向量數(shù)量積的運算,屬于基礎題.4、C【解析】
先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.5、C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項;結合特殊值,即可排除D選項.【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當時,,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎題.6、A【解析】
對于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.7、C【解析】
把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內的部分)上,顯然關于直線的對稱點為,,當且僅當共線時取等號,∴所求最小值為.故選:C.【點睛】本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質求得最小值.8、D【解析】
求的展開式中的常數(shù)項,可轉化為求展開式中的常數(shù)項和項,再求和即可得出答案.【詳解】由題意,中常數(shù)項為,中項為,所以的展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查二項式定理的應用和二項式展開式的通項公式,考查學生計算能力,屬于基礎題.9、B【解析】
根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【點睛】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.10、D【解析】
利用輔助角公式化簡函數(shù)得到,再逐項判斷正誤得到答案.【詳解】A選項,函數(shù)先增后減,錯誤B選項,不是函數(shù)對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數(shù)的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數(shù)性質的綜合應用,其中化簡三角函數(shù)是解題的關鍵.11、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點:交集及其運算.12、C【解析】
先確定解析式求出的函數(shù)值,然后判斷出方程的最小實根的范圍結合此時的,通過計算即可得到答案.【詳解】當時,,所以,故當時,,所以,而,所以,又當時,的極大值為1,所以當時,的極大值為,設方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分別取,的中點,,連接,由圖形的對稱性可知球心必在的延長線上,設球心為,半徑為,,由勾股定理可得、,再根據(jù)球的面積公式計算可得;【詳解】如圖,分別取,的中點,,連接,則易得,,,,由圖形的對稱性可知球心必在的延長線上,設球心為,半徑為,,可得,解得,.故該球的表面積為.故答案為:【點睛】本題考查多面體的外接球的計算,屬于中檔題.14、【解析】
求出向量的坐標,然后利用向量數(shù)量積的坐標運算可計算出結果.【詳解】,,,因此,.故答案為:.【點睛】本題考查平面向量數(shù)量積的坐標運算,考查計算能力,屬于基礎題.15、【解析】
先換元,令,將原方程轉化為,利用參變分離法轉化為研究兩函數(shù)的圖像交點,觀察圖像,即可求出.【詳解】因為關于的方程在區(qū)間上恰有兩個解,令,所以方程在上只有一解,即有,直線與在的圖像有一個交點,由圖可知,實數(shù)的取值范圍是,但是當時,還有一個根,所以此時共有3個根.綜上實數(shù)的取值范圍是.【點睛】本題主要考查學生運用轉化與化歸思想的能力,方程有解問題轉化成兩函數(shù)的圖像有交點問題,是常見的轉化方式.16、【解析】
利用對數(shù)函數(shù)的單調性,將不等式去掉對數(shù)符號,再依據(jù)分離參數(shù)法,轉化成求構造函數(shù)最值問題,進而求得的取值范圍。【詳解】由得,兩邊同除以,得到,,,設,,由函數(shù)在上遞減,所以,故實數(shù)的取值范圍是。【點睛】本題主要考查對數(shù)函數(shù)的單調性,以及恒成立問題的常規(guī)解法——分離參數(shù)法。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)正弦定理先求得邊c,然后由余弦定理可求得邊b;(Ⅱ)結合二倍角公式及和差公式,即可求得本題答案.【詳解】(Ⅰ)因為,由正弦定理可得,,又,所以,所以根據(jù)余弦定理得,,解得,;(Ⅱ)因為,所以,,,則.【點睛】本題主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,屬基礎題.18、(1);(2);(3)利潤約為111.2萬元.【解析】
(1)首先列出基本事件,然后根據(jù)古典概型求出恰好兩個月合格的概率;(2)首先求出利潤y和養(yǎng)殖量x的平均值,然后根據(jù)公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;(3)根據(jù)線性回歸方程代入9月份的數(shù)據(jù)即可求出9月利潤.【詳解】(1)2月到6月中,合格的月份為2,3,4月份,則5個月份任意選取3個月份的基本事件有,,,,,,,,,,共計10個,故恰好有兩個月考核合格的概率為;(2),,,,故;(3)當千只,(十萬元)(萬元),故9月份的利潤約為111.2萬元.【點睛】本題主要考查了古典概型,線性回歸方程的求解和使用,屬于基礎題.19、(1)(2)見解析【解析】
(1)取,則;取,則,∴;(2)要證,只需證,當時,;假設當時,結論成立,即,兩邊同乘以3得:而∴,即時結論也成立,∴當時,成立.綜上原不等式獲證.20、(1);(2).【解析】
(1)由正弦定理直接可求,然后運用兩角和的正弦公式算出;(2)化簡,由余弦定理得,利用基本不等式求出,確定角范圍,進而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)【點睛】本題主要考查了正余弦定理的應用,基本不等式的應用,三角函數(shù)的值域等,考查了學生運算求解能力.21、(1);(2)是,定點坐標為或【解析】
(1)根據(jù)相切得到,根據(jù)離心率得到,得到橢圓方程.(2)設直線的方程為,點、的坐標分別為,,聯(lián)立方程得到,,計算點的坐標為,點的坐標為,圓的方程可化為,得到答案.【詳解】(1)根據(jù)題意:,因為,所以,所以橢圓的方程為.(2)設直線的方程為,點、的坐標分別為,,把直線的方程代入橢圓方程化簡得到,所以,,所以,,因為直線的斜率,所以直線的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴陽職業(yè)技術學院《塑料成型工藝及模具設計》2023-2024學年第一學期期末試卷
- 2025海南省安全員-B證考試題庫及答案
- 貴陽人文科技學院《汽車理論》2023-2024學年第一學期期末試卷
- 2025年重慶建筑安全員考試題庫附答案
- 廣州應用科技學院《近代材料研究方法》2023-2024學年第一學期期末試卷
- 廣州現(xiàn)代信息工程職業(yè)技術學院《專業(yè)英語與文獻閱讀》2023-2024學年第一學期期末試卷
- 廣州衛(wèi)生職業(yè)技術學院《材料科學基礎B》2023-2024學年第一學期期末試卷
- 2025年湖北建筑安全員知識題庫附答案
- 2025云南建筑安全員B證考試題庫
- 2025年山西省安全員《A證》考試題庫
- 2025年廣西旅發(fā)南國體育投資集團限公司招聘高頻重點提升(共500題)附帶答案詳解
- 2024-2025學年銅官山區(qū)數(shù)學三年級第一學期期末調研試題含解析
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之18:“7支持-7.1資源”(雷澤佳編制-2025B0)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之17:“6策劃-6.6合作”(雷澤佳編制-2025B0)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之16:“6策劃-6.5組織結構”(雷澤佳編制-2025B0)
- 全國英語教師賽課一等獎七年級上冊(人教2024年新編)《Unit 7 Happy Birthday》教學設計
- 2024年世界職業(yè)院校技能大賽高職組“關務實務組”賽項參考試題庫(含答案)
- 江西省2023-2024學年高二上學期期末教學檢測數(shù)學試題 附答案
- 超市項目投標書模板
- 耐火材料行業(yè)競爭格局分析(如市場份額、競爭優(yōu)劣勢等)
- 技術服務保障措施以及保障措施服務計劃書
評論
0/150
提交評論