浙江省臺(tái)州市臺(tái)州中學(xué)2025屆高考沖刺模擬數(shù)學(xué)試題含解析_第1頁
浙江省臺(tái)州市臺(tái)州中學(xué)2025屆高考沖刺模擬數(shù)學(xué)試題含解析_第2頁
浙江省臺(tái)州市臺(tái)州中學(xué)2025屆高考沖刺模擬數(shù)學(xué)試題含解析_第3頁
浙江省臺(tái)州市臺(tái)州中學(xué)2025屆高考沖刺模擬數(shù)學(xué)試題含解析_第4頁
浙江省臺(tái)州市臺(tái)州中學(xué)2025屆高考沖刺模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省臺(tái)州市臺(tái)州中學(xué)2025屆高考沖刺模擬數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.2.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.3.某市政府決定派遣名干部(男女)分成兩個(gè)小組,到該市甲、乙兩個(gè)縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨(dú)成組,則不同的派遣方案共有()種A. B. C. D.4.若等差數(shù)列的前項(xiàng)和為,且,,則的值為().A.21 B.63 C.13 D.845.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,則的最小值為()A. B. C. D.6.已知集合A,則集合()A. B. C. D.7.做拋擲一枚骰子的試驗(yàn),當(dāng)出現(xiàn)1點(diǎn)或2點(diǎn)時(shí),就說這次試驗(yàn)成功,假設(shè)骰子是質(zhì)地均勻的.則在3次這樣的試驗(yàn)中成功次數(shù)X的期望為()A.13 B.18.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點(diǎn),直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣129.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()10.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.11.已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.12.在平面直角坐標(biāo)系中,已知是圓上兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)到直線的距離之和的最大值為,若數(shù)列的前項(xiàng)和恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列()中,若,,則的值是______.14.如圖,從一個(gè)邊長(zhǎng)為的正三角形紙片的三個(gè)角上,沿圖中虛線剪出三個(gè)全等的四邊形,余下部分再以虛線為折痕折起,恰好圍成一個(gè)缺少上底的正三棱柱,而剪出的三個(gè)相同的四邊形恰好拼成這個(gè)正三棱柱的上底,則所得正三棱柱的體積為______.15.內(nèi)角,,的對(duì)邊分別為,,,若,則__________.16.曲線在點(diǎn)處的切線方程為__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐的底面是菱形,底面,,分別是的中點(diǎn),.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)的位置;若不存在,說明理由.18.(12分)已知函數(shù),為實(shí)數(shù),且.(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間和極值;(Ⅱ)求函數(shù)在區(qū)間,上的值域(其中為自然對(duì)數(shù)的底數(shù)).19.(12分)在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.20.(12分)正項(xiàng)數(shù)列的前n項(xiàng)和Sn滿足:(1)求數(shù)列的通項(xiàng)公式;(2)令,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N*,都有Tn<.21.(12分)已知數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)若,,且數(shù)列前項(xiàng)和為,求的取值范圍.22.(10分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶前每件產(chǎn)品都通過合格檢驗(yàn),已知該工廠的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠提出以下檢驗(yàn)方案:將產(chǎn)品每個(gè)一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對(duì)該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當(dāng)越小時(shí),該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;(ii)當(dāng)時(shí),求使該方案最合理時(shí)的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

是函數(shù)的零點(diǎn),根據(jù)五點(diǎn)法求出圖中零點(diǎn)及軸左邊第一個(gè)零點(diǎn)可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個(gè)零點(diǎn)為,在軸左邊第一個(gè)零點(diǎn)是,∴的最小值是.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對(duì)稱性.函數(shù)的零點(diǎn)就是其圖象對(duì)稱中心的橫坐標(biāo).2、B【解析】

利用換元法化簡(jiǎn)解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因?yàn)椋ǎ?,所以,令(),則(),函數(shù)的對(duì)稱軸方程為,所以,,所以,所以的值域?yàn)?故選:B【點(diǎn)睛】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識(shí),考查學(xué)生分析問題,解決問題的能力,運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識(shí).3、C【解析】

在所有兩組至少都是人的分組中減去名女干部單獨(dú)成一組的情況,再將這兩組分配,利用分步乘法計(jì)數(shù)原理可得出結(jié)果.【詳解】?jī)山M至少都是人,則分組中兩組的人數(shù)分別為、或、,

又因?yàn)槊刹坎荒軉为?dú)成一組,則不同的派遣方案種數(shù)為.故選:C.【點(diǎn)睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計(jì)算能力,屬于中等題.4、B【解析】

由已知結(jié)合等差數(shù)列的通項(xiàng)公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因?yàn)?,,所以,解可得,,,則.故選:B.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式及求和公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.5、D【解析】

由,可求出等比數(shù)列的通項(xiàng)公式,進(jìn)而可知當(dāng)時(shí),;當(dāng)時(shí),,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時(shí),;當(dāng)時(shí),,則的最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于中檔題.6、A【解析】

化簡(jiǎn)集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.7、C【解析】

每一次成功的概率為p=26=【詳解】每一次成功的概率為p=26=13故選:C.【點(diǎn)睛】本題考查了二項(xiàng)分布求數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.8、D【解析】

分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因?yàn)橹本€經(jīng)過C的焦點(diǎn),所以.同理可得,所以故選:D.【點(diǎn)睛】本題考查的是直線與拋物線的交點(diǎn)問題,運(yùn)用拋物線的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。9、D【解析】

由題意利用兩個(gè)向量坐標(biāo)形式的運(yùn)算法則,兩個(gè)向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對(duì)應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對(duì)應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點(diǎn)睛】本題主要考查兩個(gè)向量坐標(biāo)形式的運(yùn)算,兩個(gè)向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.10、A【解析】

將化成以為底的對(duì)數(shù),即可判斷的大小關(guān)系;由對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對(duì)數(shù)函數(shù)的性質(zhì)可得.又因?yàn)椋?故選:A.【點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)的運(yùn)算性質(zhì).兩個(gè)對(duì)數(shù)型的數(shù)字比較大小時(shí),底數(shù)相同,則構(gòu)造對(duì)數(shù)函數(shù),結(jié)合對(duì)數(shù)的單調(diào)性可判斷大小;若真數(shù)相同,則結(jié)合對(duì)數(shù)函數(shù)的圖像或者換底公式可判斷大??;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.11、B【解析】

由題意畫出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點(diǎn)睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識(shí),考查空間想象能力、邏輯思維能力、運(yùn)算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.12、B【解析】

由于到直線的距離和等于中點(diǎn)到此直線距離的二倍,所以只需求中點(diǎn)到此直線距離的最大值即可。再得到中點(diǎn)的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點(diǎn)到此直線距離的最大值的關(guān)系可以求出。再通過裂項(xiàng)的方法求的前項(xiàng)和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設(shè)線段的中點(diǎn),則,在圓上,到直線的距離之和等于點(diǎn)到該直線的距離的兩倍,點(diǎn)到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點(diǎn)睛】本題考查了向量數(shù)量積,點(diǎn)到直線的距離,數(shù)列求和等知識(shí),是一道不錯(cuò)的綜合題.二、填空題:本題共4小題,每小題5分,共20分。13、-15【解析】

是等差數(shù)列,則有,可得的值,再由可得,計(jì)算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計(jì)算.14、1【解析】

由題意得正三棱柱底面邊長(zhǎng)6,高為,由此能求出所得正三棱柱的體積.【詳解】如圖,作,交于,,由題意得正三棱柱底面邊長(zhǎng),高為,所得正三棱柱的體積為:.故答案為:1.【點(diǎn)睛】本題考查立體幾何中的翻折問題、正三棱柱體積的求法、三棱柱的結(jié)構(gòu)特征等基礎(chǔ)知識(shí),考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意翻折前后的不變量.15、【解析】∵,∴,即,∴,∴.16、【解析】

對(duì)函數(shù)求導(dǎo)后,代入切點(diǎn)的橫坐標(biāo)得到切線斜率,然后根據(jù)直線方程的點(diǎn)斜式,即可寫出切線方程.【詳解】因?yàn)?,所以,從而切線的斜率,所以切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查過曲線上一點(diǎn)的切線方程的求法,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】

(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標(biāo)系,求得直線的方向向量與平面的一個(gè)法向量,然后求解線面角的正弦值即可;(Ⅲ)假設(shè)滿足題意的點(diǎn)存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點(diǎn)F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則:,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,而,設(shè)直線與平面所成角為,則.(Ⅲ)由題意可得:,假設(shè)滿足題意的點(diǎn)存在,設(shè),,據(jù)此可得:,即:,從而點(diǎn)F的坐標(biāo)為,據(jù)此可得:,,結(jié)合題意有:,解得:.故點(diǎn)F為中點(diǎn)時(shí)滿足題意.【點(diǎn)睛】本題主要考查線面垂直的判定定理與性質(zhì)定理,線面角的向量求法,立體幾何中的探索性問題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.18、(Ⅰ)極大值0,沒有極小值;函數(shù)的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】

(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數(shù)在區(qū)間上的值域,即可得到本題答案.【詳解】當(dāng)時(shí),,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,故當(dāng)時(shí),函數(shù)取得極大值,沒有極小值;函數(shù)的增區(qū)間為,減區(qū)間為,,當(dāng)時(shí),,在上單調(diào)遞增,即函數(shù)的值域?yàn)椋划?dāng)時(shí),,在上單調(diào)遞減,即函數(shù)的值域?yàn)椋划?dāng)時(shí),易得時(shí),,在上單調(diào)遞增,時(shí),,在上單調(diào)遞減,故當(dāng)時(shí),函數(shù)取得最大值,最小值為,中最小的,當(dāng)時(shí),,最小值;當(dāng),,最小值;綜上,當(dāng)時(shí),函數(shù)的值域?yàn)?,?dāng)時(shí),函數(shù)的值域,當(dāng)時(shí),函數(shù)的值域?yàn)?,?dāng)時(shí),函數(shù)的值域?yàn)?【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求單調(diào)區(qū)間和極值,以及利用導(dǎo)數(shù)研究含參函數(shù)在給定區(qū)間的值域,考查學(xué)生的運(yùn)算求解能力,體現(xiàn)了分類討論的數(shù)學(xué)思想.19、(Ⅰ)(t為參數(shù)),;(Ⅱ)1.【解析】

(Ⅰ)直接由已知寫出直線l1的參數(shù)方程,設(shè)N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得,即ρ=4cosθ,然后化為普通方程;(Ⅱ)將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,得到關(guān)于t的一元二次方程,再由參數(shù)t的幾何意義可得|AP|?|AQ|的值.【詳解】(Ⅰ)直線l1的參數(shù)方程為,(t為參數(shù))即(t為參數(shù)).設(shè)N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),則,即,即ρ=4cosθ,∴曲線C的直角坐標(biāo)方程為x2-4x+y2=0(x≠0).(Ⅱ)將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,得,即,t1,t2為方程的兩個(gè)根,∴t1t2=-1,∴|AP|?|AQ|=|t1t2|=|-1|=1.【點(diǎn)睛】本題考查簡(jiǎn)單曲線的極坐標(biāo)方程,考查直角坐標(biāo)方程與直角坐標(biāo)方程的互化,訓(xùn)練了直線參數(shù)方程中參數(shù)t的幾何意義的應(yīng)用,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論