版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣西賀州平桂高級中學(xué)2025屆高三最后一卷數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計值為A. B.C. D.2.為得到y(tǒng)=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π3.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.4.已知,,則()A. B. C. D.5.如圖所示,矩形的對角線相交于點(diǎn),為的中點(diǎn),若,則等于().A. B. C. D.6.以下三個命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項指標(biāo)檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;③對分類變量與的隨機(jī)變量的觀測值來說,越小,判斷“與有關(guān)系”的把握越大;其中真命題的個數(shù)為()A.3 B.2 C.1 D.07.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會會旗中五環(huán)所占面積與單獨(dú)五個環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗:通過計算機(jī)模擬在長為10,寬為6的長方形奧運(yùn)會旗內(nèi)隨機(jī)取N個點(diǎn),經(jīng)統(tǒng)計落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.8.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.09.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機(jī)取一點(diǎn),若此點(diǎn)取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定10.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.11.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關(guān)于直線對稱 D.的圖象關(guān)于點(diǎn)對稱12.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為()A.2 B.3 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在處的切線方程是____________.14.如圖,已知扇形的半徑為1,面積為,則_____.15.函數(shù)的定義域是.16.已知函數(shù),若在定義域內(nèi)恒有,則實(shí)數(shù)的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實(shí)數(shù)的最大值.18.(12分)已知數(shù)列的前項和為,且滿足,各項均為正數(shù)的等比數(shù)列滿足(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和19.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點(diǎn).(1)求證:;(2)求二面角的大?。?0.(12分)11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經(jīng)過1輪投球,記甲的得分為,求的分布列;(2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計得分,甲的得分高于乙的得分的概率.①求;②規(guī)定,經(jīng)過計算機(jī)計算可估計得,請根據(jù)①中的值分別寫出a,c關(guān)于b的表達(dá)式,并由此求出數(shù)列的通項公式.21.(12分)已知向量,.(1)求的最小正周期;(2)若的內(nèi)角的對邊分別為,且,求的面積.22.(10分)已知橢圓,過的直線與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).(1)若,求直線的方程;(2)設(shè)關(guān)于軸的對稱點(diǎn)為,證明:直線過軸上的定點(diǎn).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計值為,故選C.2、D【解析】試題分析:因為,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點(diǎn):三角函數(shù)的圖像變換.3、C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.4、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點(diǎn)睛】考查集合的并集運(yùn)算,基礎(chǔ)題.5、A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題.6、C【解析】
根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨(dú)立性檢驗的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;兩個隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機(jī)變量的觀測值來說,越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點(diǎn)睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨(dú)立性檢驗等知識點(diǎn),屬于基礎(chǔ)題.7、B【解析】
根據(jù)比例關(guān)系求得會旗中五環(huán)所占面積,再計算比值.【詳解】設(shè)會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問題求解,屬基礎(chǔ)題.8、B【解析】
根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因為即而所以夾角為故選:B【點(diǎn)睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.9、B【解析】
先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點(diǎn)取自陰影部分的概率為.又,故.故選B.【點(diǎn)睛】本題考查了幾何概型,定積分的計算以及幾何意義,屬于中檔題.10、D【解析】
利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點(diǎn)睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.11、D【解析】
先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項判斷,即可得出結(jié)果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當(dāng),,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標(biāo)為:解得:若圖象關(guān)于點(diǎn)對稱,則解得:,故D錯誤;故選:D.【點(diǎn)睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計算能力,屬于基礎(chǔ)題.12、D【解析】試題分析:拋物線焦點(diǎn)在軸上,開口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因為點(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因為拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評:拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出和的值,利用點(diǎn)斜式可得出所求切線的方程.【詳解】,則,,.因此,函數(shù)在處的切線方程是,即.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計算能力,屬于基礎(chǔ)題.14、【解析】
根據(jù)題意,利用扇形面積公式求出圓心角,再根據(jù)等腰三角形性質(zhì)求出,利用向量的數(shù)量積公式求出.【詳解】設(shè)角,則,,所以在等腰三角形中,,則.故答案為:.【點(diǎn)睛】本題考查扇形的面積公式和向量的數(shù)量積公式,屬于基礎(chǔ)題.15、【解析】解:因為,故定義域為16、【解析】
根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)圖象可將原題轉(zhuǎn)化為恒成立問題,湊而可知的圖象在過原點(diǎn)且與兩函數(shù)相切的兩條切線之間;利用過一點(diǎn)的曲線切線的求法可求得兩切線斜率,結(jié)合分母不為零的條件可最終確定的取值范圍.【詳解】由指數(shù)函數(shù)與對數(shù)函數(shù)圖象可知:,恒成立可轉(zhuǎn)化為恒成立,即恒成立,,即是夾在函數(shù)與的圖象之間,的圖象在過原點(diǎn)且與兩函數(shù)相切的兩條切線之間.設(shè)過原點(diǎn)且與相切的直線與函數(shù)相切于點(diǎn),則切線斜率,解得:;設(shè)過原點(diǎn)且與相切的直線與函數(shù)相切于點(diǎn),則切線斜率,解得:;當(dāng)時,,又,滿足題意;綜上所述:實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查恒成立問題的求解,重點(diǎn)考查了導(dǎo)數(shù)幾何意義應(yīng)用中的過一點(diǎn)的曲線切線的求解方法;關(guān)鍵是能夠結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)圖象將問題轉(zhuǎn)化為切線斜率的求解問題;易錯點(diǎn)是忽略分母不為零的限制,忽略對于臨界值能否取得的討論.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)最大值為.【解析】
(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進(jìn)而可證得結(jié)論成立;(2)由可得出,并將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,進(jìn)而可得出實(shí)數(shù)的最大值.【詳解】(1).當(dāng)時,函數(shù)單調(diào)遞減,則;當(dāng)時,函數(shù)單調(diào)遞增,則;當(dāng)時,函數(shù)單調(diào)遞增,則.綜上所述,,所以;(2)因為恒成立,且,,所以恒成立,即.因為,當(dāng)且僅當(dāng)時等號成立,所以,實(shí)數(shù)的最大值為.【點(diǎn)睛】本題考查含絕對值函數(shù)最值的求解,同時也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計算能力,屬于中等題.18、(1);(2)【解析】
(1)由化為,利用數(shù)列的通項公式和前n項和的關(guān)系,得到是首項為,公差為的等差數(shù)列求解.(2)由(1)得到,再利用錯位相減法求解.【詳解】(1)可以化為,,,,又時,數(shù)列從開始成等差數(shù)列,,代入得是首項為,公差為的等差數(shù)列,,.(2)由(1)得,,,兩式相減得,,.【點(diǎn)睛】本題主要考查數(shù)列的通項公式和前n項和的關(guān)系和錯位相減法求和,還考查了運(yùn)算求解的能力,屬于中檔題.19、(1)證明見解析;(2)60°.【解析】試題分析:(1)連結(jié)PD,由題意可得,則AB⊥平面PDE,;(2)法一:結(jié)合幾何關(guān)系做出二面角的平面角,計算可得其正切值為,故二面角的大小為;法二:以D為原點(diǎn)建立空間直角坐標(biāo)系,計算可得平面PBE的法向量.平面PAB的法向量為.據(jù)此計算可得二面角的大小為.試題解析:(1)連結(jié)PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.則DEPD,又EDAB,PD平面AB=D,DE平面PAB,過D做DF垂直PB與F,連接EF,則EFPB,∠DFE為所求二面角的平面角,則:DE=,DF=,則,故二面角的大小為法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).設(shè)平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量為.設(shè)二面角的大小為,由圖知,,所以即二面角的大小為.20、(1)分布列見解析;(2)①;②,.【解析】
(1)經(jīng)過1輪投球,甲的得分的取值為,記一輪投球,甲投中為事件,乙投中為事件,相互獨(dú)立,計算概率后可得分布列;(2)由(1)得,由兩輪的得分可計算出,計算時可先計算出經(jīng)過2輪后甲的得分的分布列(的取值為),然后結(jié)合的分布列和的分布可計算,由,代入,得兩個方程,解得,從而得到數(shù)列的遞推式,變形后得是等比數(shù)列,由等比數(shù)列通項公式得,然后用累加法可求得.【詳解】(1)記一輪投球,甲命中為事件,乙命中為事件,相互獨(dú)立,由題意,,甲的得分的取值為,,,,∴的分布列為:-101(2)由(1),,同理,經(jīng)過2輪投球,甲的得分取值:記,,,則,,,,由此得甲的得分的分布列為:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴數(shù)列是等比數(shù)列,公比為,首項為,∴.∴.【點(diǎn)睛】本題考查隨機(jī)變量的概率分布列,考查相互獨(dú)立事件同時發(fā)生的概率,考查由數(shù)列的遞推式求通項公式,考查學(xué)生的轉(zhuǎn)化與化歸思想,本題難點(diǎn)在于求概率分布列,特別是經(jīng)過2輪投球后甲的得分的概率分布列,這里可用列舉法寫出各種可能,然后由獨(dú)立事件的概率公式計算出概
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 化學(xué)老師2022新學(xué)期工作計劃
- 學(xué)生會主席年度工作規(guī)劃3篇
- 設(shè)計師年度工作總結(jié)匯編15篇
- 班主任手冊周工作計劃內(nèi)容
- “三生教育”心得體會6篇
- 因個人原因的辭職報告(15篇)
- 中國法制史 第四章 刑事法律制度
- 2025年高速精密平板切紙機(jī)項目發(fā)展計劃
- 兄弟贍養(yǎng)父母協(xié)議書(2篇)
- 公共關(guān)系專家中介合同(2篇)
- 新媒體用戶行為研究-洞察分析
- 2025版國家開放大學(xué)法學(xué)本科《知識產(chǎn)權(quán)法》期末紙質(zhì)考試總題庫
- 醫(yī)藥銷售培訓(xùn)課程
- 2022-2023學(xué)年北京市海淀區(qū)七年級(上)期末語文試卷
- 膝關(guān)節(jié)炎階梯治療
- 設(shè)備日常維護(hù)及保養(yǎng)培訓(xùn)
- 行業(yè)背景、經(jīng)濟(jì)運(yùn)行情況及產(chǎn)業(yè)未來發(fā)展趨勢分析
- 配電室維護(hù)協(xié)議書
- 2024年度工作總結(jié)模板簡約干練風(fēng)格
- 2024年廣東省第一次普通高中學(xué)業(yè)水平合格性考試歷史試卷(解析版)
- 部編版一年級上冊語文期末試題含答案
評論
0/150
提交評論