版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年華師大新版高二數(shù)學(xué)下冊(cè)月考試卷867考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共5題,共10分)1、設(shè)則A.B.C.D.2、已知函數(shù)且則實(shí)數(shù)的值為()A.B.C.或D.或或3、在直角坐標(biāo)系中,直線的傾斜角是()A.B.C.D.4、若a,b∈[0,1],則不等式a2+b2≤1成立的概率為()A.B.C.D.5、若直線y=0的傾斜角為α,則α的值是()A.0B.C.D.不存在評(píng)卷人得分二、填空題(共5題,共10分)6、已知雙曲線過點(diǎn)(3,-2),且與橢圓4x2+9y2=36有相同焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程為____.7、直線y=kx與圓(x-2)2+y2=1相切,則k的值是____.8、一次測(cè)量中出現(xiàn)正誤差和負(fù)誤差的概率分別是在6次測(cè)量中恰好2次出現(xiàn)正誤差的概率是.(用分?jǐn)?shù)作答)9、用數(shù)學(xué)歸納法證明等式第二步,“假設(shè)當(dāng)時(shí)等式成立,則當(dāng)時(shí)有”,其中____.10、【題文】已知拋物線焦點(diǎn)恰好是雙曲線的右焦點(diǎn),且雙曲線過點(diǎn)則該雙曲線的漸近線方程為________.評(píng)卷人得分三、作圖題(共8題,共16分)11、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
12、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長最?。ㄈ鐖D所示)13、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最小.(如圖所示)14、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
15、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長最?。ㄈ鐖D所示)16、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最?。ㄈ鐖D所示)17、分別畫一個(gè)三棱錐和一個(gè)四棱臺(tái).評(píng)卷人得分四、解答題(共1題,共3分)18、(本題滿分12分)在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c(其中),設(shè)向量且向量為單位向量.(模為1的向量稱作單位向量)(1)求∠B的大?。唬?)若求△ABC的面積.評(píng)卷人得分五、計(jì)算題(共4題,共24分)19、如圖,正三角形ABC的邊長為2,M是BC邊上的中點(diǎn),P是AC邊上的一個(gè)動(dòng)點(diǎn),求PB+PM的最小值.20、1.(本小題滿分12分)分別是橢圓的左右焦點(diǎn),直線與C相交于A,B兩點(diǎn)(1)直線斜率為1且過點(diǎn)若成等差數(shù)列,求值(2)若直線且求值.21、1.本小題滿分12分)對(duì)于任意的實(shí)數(shù)不等式恒成立,記實(shí)數(shù)的最大值是(1)求的值;(2)解不等式22、解不等式|x﹣2|+|x﹣4|>6.評(píng)卷人得分六、綜合題(共3題,共9分)23、如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過AB,C三點(diǎn)的拋物的對(duì)稱軸為直線l,D為對(duì)稱軸l上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
(3)以點(diǎn)A為圓心;以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時(shí);直線BD與⊙A相切;
②寫出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):____.24、(2009?新洲區(qū)校級(jí)模擬)如圖,已知直角坐標(biāo)系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點(diǎn)A和點(diǎn)B,且OA=OB=1.這條曲線是函數(shù)y=的圖象在第一象限的一個(gè)分支,點(diǎn)P是這條曲線上任意一點(diǎn),它的坐標(biāo)是(a、b),由點(diǎn)P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點(diǎn)E、F.則AF?BE=____.25、已知f(x)=logax(a>0,a≠1),設(shè)數(shù)列f(a1),f(a2),f(a3),,f(an)是首項(xiàng)為4,公差為2的等差數(shù)列.參考答案一、選擇題(共5題,共10分)1、B【分析】【解析】試題分析:∵∴故選B.考點(diǎn):三角誘導(dǎo)公式,同角關(guān)系式【解析】【答案】B2、C【分析】【解析】試題分析:當(dāng)時(shí),有∴當(dāng)時(shí),有∴綜上實(shí)數(shù)的值為或故選C考點(diǎn):本題考查了方程的求法【解析】【答案】C3、C【分析】【解析】試題分析:由直線方程知,所以斜率為所以傾斜角為考點(diǎn):本小題主要考查由直線的一般方程求直線的斜率,進(jìn)而求直線的傾斜角.【解析】【答案】C4、D【分析】【解答】解:a,b∈[0,1],對(duì)應(yīng)區(qū)域是邊長為1的正方形,不等式a2+b2≤1滿足區(qū)域?yàn)閱挝粓A的第一象限部分,面積為
由幾何概型的公式得到:a,b∈[0,1],則不等式a2+b2≤1成立的概率為:
故選D
【分析】本題是幾何概型的考查,求出區(qū)域的面積,利用面積比求得概率.5、A【分析】解:∵直線y=0的直線斜率為0;
∴對(duì)應(yīng)的傾斜角α=0;
故選:A.
根據(jù)直線斜率和傾斜角之間的關(guān)系即可求直線的傾斜角.
本題主要考查直線斜率和直線傾斜角之間的定義和運(yùn)算,比較基礎(chǔ).【解析】【答案】A二、填空題(共5題,共10分)6、略
【分析】
由4x2+9y2=36,得則c2=9-4=5,所以c=.
所以橢圓的焦點(diǎn)為.
因?yàn)殡p曲線與橢圓有相同的焦點(diǎn),所以可設(shè)雙曲線方程為.
因?yàn)殡p曲線過點(diǎn)(3,-2),所以
又a2+b2=5②,聯(lián)立①②,解得:a2=3或a2=15(舍),b2=2.
所以雙曲線的標(biāo)準(zhǔn)方程為.
故答案為.
【解析】【答案】化橢圓方程為標(biāo)準(zhǔn)方程,求出橢圓的焦點(diǎn),由此設(shè)出雙曲線的標(biāo)準(zhǔn)方程,把點(diǎn)(3,-2)代入方程,聯(lián)立a2+b2=c2即可求得a2,b2的值;則雙曲線的方程可求.
7、略
【分析】
∵直線y=kx與圓(x-2)2+y2=1相切;∴圓心(2,0)到kx-y=0的距離等于半徑.
∴=1,解得k=.
故答案為:.
【解析】【答案】根據(jù)圓心(2,0)到kx-y=0的距離等于半徑可得=1;解方程求得k得值.
8、略
【分析】【解析】【答案】9、略
【分析】由于n=k+1時(shí),左邊=所以【解析】【答案】10、略
【分析】【解析】
試題分析:由于拋物線的焦點(diǎn)為所以雙曲線中又雙曲線過點(diǎn)即可得即可解得所以雙曲線的漸近線方程為
考點(diǎn):1.拋物線知識(shí).2.雙曲線的標(biāo)準(zhǔn)方程.3.待定系數(shù)法求雙曲線的方程.【解析】【答案】三、作圖題(共8題,共16分)11、略
【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對(duì)稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
12、略
【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.13、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最小;
理由是兩點(diǎn)之間,線段最短.14、略
【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對(duì)稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
15、略
【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.16、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最?。?/p>
理由是兩點(diǎn)之間,線段最短.17、解:畫三棱錐可分三步完成。
第一步:畫底面﹣﹣畫一個(gè)三角形;
第二步:確定頂點(diǎn)﹣﹣在底面外任一點(diǎn);
第三步:畫側(cè)棱﹣﹣連接頂點(diǎn)與底面三角形各頂點(diǎn).
畫四棱可分三步完成。
第一步:畫一個(gè)四棱錐;
第二步:在四棱錐一條側(cè)棱上取一點(diǎn);從這點(diǎn)開始,順次在各個(gè)面內(nèi)畫與底面對(duì)應(yīng)線段平行的線段;
第三步:將多余線段擦去.
【分析】【分析】畫三棱錐和畫四棱臺(tái)都是需要先畫底面,再確定平面外一點(diǎn)連接這點(diǎn)與底面上的頂點(diǎn),得到錐體,在畫四棱臺(tái)時(shí),在四棱錐一條側(cè)棱上取一點(diǎn),從這點(diǎn)開始,順次在各個(gè)面內(nèi)畫與底面對(duì)應(yīng)線段平行的線段,將多余線段擦去,得到圖形.四、解答題(共1題,共3分)18、略
【分析】本試題主要是考查了向量的數(shù)量積和解三角形中邊角轉(zhuǎn)換的運(yùn)用。(1)根據(jù)兩個(gè)向量的坐標(biāo),以及差向量的模長為1,結(jié)合數(shù)量積的性質(zhì)可知得到角B的值。(2)正弦定理可知sinA,然后又∴結(jié)合正弦面積公式得到結(jié)論?!窘馕觥?/p>
(1)2分∴4分又B為三角形的內(nèi)角,由故6分(2)根據(jù)正弦定理,知即∴又∴9分故C=△ABC的面積=12分【解析】【答案】(1)(2)C=△ABC的面積=五、計(jì)算題(共4題,共24分)19、略
【分析】【分析】作點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)E,連接EP、EB、EM、EC,則PB+PM=PE+PM,因此EM的長就是PB+PM的最小值.【解析】【解答】解:如圖;作點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)E,連接EP;EB、EM、EC;
則PB+PM=PE+PM;
因此EM的長就是PB+PM的最小值.
從點(diǎn)M作MF⊥BE;垂足為F;
因?yàn)锽C=2;
所以BM=1,BE=2=2.
因?yàn)椤螹BF=30°;
所以MF=BM=,BF==,ME==.
所以PB+PM的最小值是.20、略
【分析】【解析】
(1)設(shè)橢圓半焦距為c,則方程為設(shè)成等差數(shù)列由得高考+資-源-網(wǎng)解得6分(2)聯(lián)立直線與橢圓方程:帶入得12分【解析】【答案】(1)(2)21、略
【分析】【解析】
(1)由絕對(duì)值不等式,有那么對(duì)于只需即則4分(2)當(dāng)時(shí):即則當(dāng)時(shí):即則當(dāng)時(shí):即則10分那么不等式的解集為12分【解析】【答案】(1)(2)22、解:當(dāng)x<2時(shí);不等式即6﹣2x>6,解得x<0.
當(dāng)2≤x<4時(shí);不等式即2>6,解得x無解.
當(dāng)x≥4時(shí);不等式即x﹣6>6,解得x>12.
綜上可得,不等式的解集為(﹣∞,0)∪(12,+∞).【分析】【分析】將絕對(duì)值不等式的左邊去掉絕對(duì)值,在每一段上解不等式,最后求它們的并集即可.六、綜合題(共3題,共9分)23、略
【分析】【分析】(1)由待定系數(shù)法可求得拋物線的解析式.
(2)連接BC;交直線l于點(diǎn)D,根據(jù)拋物線對(duì)稱軸的性質(zhì),點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱,∴AD=BD.
∴AD+CD=BD+CD;由“兩點(diǎn)之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點(diǎn);
設(shè)出直線BC的解析式為y=kx+b;可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點(diǎn)D的坐標(biāo).
(3)由(2)可知,當(dāng)AD+CD最短時(shí),D在直線BC上,由于已知A,B,C,D四點(diǎn)坐標(biāo),根據(jù)線段之間的長度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長定理知,另一點(diǎn)D與現(xiàn)在的點(diǎn)D關(guān)于x軸對(duì)稱,所以另一點(diǎn)D的坐標(biāo)為(1,-2).【解析】【解答】解:
(1)設(shè)拋物線的解析式為y=a(x+1)(x-3).(1分)
將(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)連接BC;交直線l于點(diǎn)D.
∵點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“兩點(diǎn)之間;線段最短”的原理可知:
此時(shí)AD+CD最??;點(diǎn)D的位置即為所求.(5分)
設(shè)直線BC的解析式為y=kx+b;
由直線BC過點(diǎn)(3;0),(0,3);
得
解這個(gè)方程組,得
∴直線BC的解析式為y=-x+3.(6分)
由(1)知:對(duì)稱軸l為;即x=1.
將x=1代入y=-x+3;得y=-1+3=2.
∴點(diǎn)D的坐標(biāo)為(1;2).(7分)
說明:用相似三角形或三角函數(shù)求點(diǎn)D的坐標(biāo)也可;答案正確給(2分).
(3)①連接AD.設(shè)直線l與x軸的交點(diǎn)記為點(diǎn)E.
由(2)知:當(dāng)AD+CD最小時(shí);點(diǎn)D的坐標(biāo)為(1,2).
∴DE=AE=BE=2.
∴∠DAB=∠DBA=45度.(8分)
∴∠ADB=90度.
∴AD⊥BD.
∴BD與⊙A相切.(9分)
②∵另一點(diǎn)D與D(1;2)關(guān)于x軸對(duì)稱;
∴D(1,-2).(11分)24、略
【分析】【分析】根據(jù)OA=OB,得到△AOB是等腰直角三角形,則△NBF也是等腰直角三角形,由于P的縱坐標(biāo)是b,因而F點(diǎn)的縱坐標(biāo)是b,即FM=b,則得到AF=b,同理BE=a,根據(jù)(a,b)是函數(shù)y=的圖象上的點(diǎn),因而b=,ab=,則即可求出AF?BE.【解析】【解答】解:∵P的坐標(biāo)為(a,);且PN⊥OB,PM⊥OA;
∴N的坐標(biāo)為(0,);M點(diǎn)的坐標(biāo)為(a,0);
∴BN=1-;
在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);
∴NF=BN=1-;
∴F
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度臨時(shí)實(shí)習(xí)生勞動(dòng)合同4篇
- 2025年洗車行汽車美容店環(huán)保設(shè)備采購合同5篇
- 2025年新疆棉花運(yùn)輸合同「安全與環(huán)?!闺p重保障2篇
- 二零二五版廠房租賃合同標(biāo)準(zhǔn):租賃廠房環(huán)境監(jiān)測(cè)與保護(hù)協(xié)議3篇
- 二零二五年購物中心A區(qū)攤位租賃合同升級(jí)版2篇
- 二零二五年度燃料油風(fēng)險(xiǎn)管理及保險(xiǎn)合同2篇
- 個(gè)性化居間服務(wù)借款合同書(2024版)版B版
- 二零二五版冷藏保鮮技術(shù)研發(fā)與應(yīng)用合同4篇
- 二零二五年度網(wǎng)絡(luò)安全應(yīng)急演練評(píng)估合同2篇
- 二零二五版辦公家具租賃售后服務(wù)合同客戶滿意3篇
- 2024版?zhèn)€人私有房屋購買合同
- 2025年山東光明電力服務(wù)公司招聘筆試參考題庫含答案解析
- 《神經(jīng)發(fā)展障礙 兒童社交溝通障礙康復(fù)規(guī)范》
- 2025年中建六局二級(jí)子企業(yè)總經(jīng)理崗位公開招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年5月江蘇省事業(yè)單位招聘考試【綜合知識(shí)與能力素質(zhì)】真題及答案解析(管理類和其他類)
- 注漿工安全技術(shù)措施
- 2024年世界職業(yè)院校技能大賽“食品安全與質(zhì)量檢測(cè)組”參考試題庫(含答案)
- 3-9年級(jí)信息技術(shù)(人教版、清華版)教科書資源下載
- 上海牛津版三年級(jí)英語3B期末試卷及答案(共5頁)
- 行為疼痛量表BPS
- 小學(xué)生必背古詩詞80首(硬筆書法田字格)
評(píng)論
0/150
提交評(píng)論