2024年滬教版高一數(shù)學(xué)上冊(cè)月考試卷_第1頁(yè)
2024年滬教版高一數(shù)學(xué)上冊(cè)月考試卷_第2頁(yè)
2024年滬教版高一數(shù)學(xué)上冊(cè)月考試卷_第3頁(yè)
2024年滬教版高一數(shù)學(xué)上冊(cè)月考試卷_第4頁(yè)
2024年滬教版高一數(shù)學(xué)上冊(cè)月考試卷_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2024年滬教版高一數(shù)學(xué)上冊(cè)月考試卷543考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共5題,共10分)1、下列函數(shù)中最小正周期為的是()A.B.C.D.2、三個(gè)數(shù)50.4,0.45,log0.45的大小順序是()A.0.45<log0.45<50.4B.0.45<50.4<log0.45C.log0.45<50.4<0.45D.log0.45<0.45<50.43、【題文】直線的傾斜角是()A.300B.450C.600D.9004、若集合M={y|y=2x,x∈R},P={x|y=},則M∩P=()A.(1,+∞)B.[1,+∞)C.(0,+∞)D.[0,+∞)5、函數(shù)f(x)=log(x2-ax+3)在(-∞,1)上單調(diào)遞增,則a的范圍是()A.(2,+∞)B.[2,+∞)C.[2,4]D.[2,4)評(píng)卷人得分二、填空題(共9題,共18分)6、設(shè)等比數(shù)列的前項(xiàng)和為若則______.7、已知f(1-2x)=x2-1,f(3)=____.8、經(jīng)過(guò)點(diǎn)A(2,1)且到原點(diǎn)的距離等于1的直線方程是____.9、【題文】

已知函數(shù)的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍____。10、函數(shù)f(x)=x2-4x-5的零點(diǎn)是____.11、平面內(nèi)與兩定點(diǎn)距離之比為定值的點(diǎn)的軌跡是____.12、設(shè)l;m,n是空間三條不同的直線,α,β是空間兩個(gè)不重合的平面,給出下列四個(gè)命題:

①若l與m異面;m∥n,則l與n異面;

②若l∥α;α∥β,則l∥β;

③若α⊥β;l⊥α,m⊥β,則l⊥m;

④若m∥α;m∥n,則n∥α.

其中正確命題的序號(hào)有____.(請(qǐng)將你認(rèn)為正確命題的序號(hào)都填上)13、已知集合U={1,2,3,4},A={1,3},B={1,3,4},則A∪(?UB)=______.14、一組數(shù)據(jù)2x4610

的平均值是5

則此組數(shù)據(jù)的標(biāo)準(zhǔn)差是______.評(píng)卷人得分三、證明題(共8題,共16分)15、如圖;已知AB是⊙O的直徑,P是AB延長(zhǎng)線上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:

(1)AD=AE

(2)PC?CE=PA?BE.16、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.

求證:(1)∠CFD=∠CAD;

(2)EG<EF.17、如圖,已知:D、E分別為△ABC的AB、AC邊上的點(diǎn),DE∥BC,BE與CD交于點(diǎn)O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.18、如圖;已知AB是⊙O的直徑,P是AB延長(zhǎng)線上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:

(1)AD=AE

(2)PC?CE=PA?BE.19、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.

求證:(1)∠CFD=∠CAD;

(2)EG<EF.20、求證:(1)周長(zhǎng)為21的平行四邊形能夠被半徑為的圓面所覆蓋.

(2)桌面上放有一絲線做成的線圈,它的周長(zhǎng)是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.21、如圖,已知:D、E分別為△ABC的AB、AC邊上的點(diǎn),DE∥BC,BE與CD交于點(diǎn)O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.22、如圖;過(guò)圓O外一點(diǎn)D作圓O的割線DBA,DE與圓O切于點(diǎn)E,交AO的延長(zhǎng)線于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點(diǎn);

(2)若CF=3,DE?EF=,求EF的長(zhǎng).評(píng)卷人得分四、作圖題(共2題,共14分)23、以下是一個(gè)用基本算法語(yǔ)句編寫(xiě)的程序;根據(jù)程序畫(huà)出其相應(yīng)的程序框圖.

24、請(qǐng)畫(huà)出如圖幾何體的三視圖.

評(píng)卷人得分五、計(jì)算題(共4題,共12分)25、己知方程x2-x-1=0的根是方程x6-px2+q=0的根,則p=____,q=____.26、如圖,某一水庫(kù)水壩的橫斷面是梯形ABCD,壩頂寬CD=5米,斜坡AD=16米,壩高6米,斜坡BC的坡度i=1:3,求斜坡AD的坡角∠A(精確到1分)和壩底寬AB(精確到0.1米).27、一組數(shù)據(jù);1,3,-1,2,x的平均數(shù)是1,那么這組數(shù)據(jù)的方差是____.28、已知f(x)=8+2x﹣x2,g(x)=f(2﹣x2),試求g(x)的單調(diào)區(qū)間.評(píng)卷人得分六、綜合題(共4題,共28分)29、先閱讀下面的材料再完成下列各題

我們知道,若二次函數(shù)y=ax2+bx+c對(duì)任意的實(shí)數(shù)x都有y≥0,則必有a>0,△=b2-4ac≤0;例如y=x2+2x+1=(x+1)2≥0,則△=b2-4ac=0,y=x2+2x+2=(x+1)2+1>0,則△=b2-4ac<0.

(1)求證:(a12+a22++an2)?(b12+b22++bn2)≥(a1?b1+a2?b2++an?bn)2

(2)若x+2y+3z=6,求x2+y2+z2的最小值;

(3)若2x2+y2+z2=2;求x+y+z的最大值;

(4)指出(2)中x2+y2+z2取最小值時(shí),x,y,z的值(直接寫(xiě)出答案).30、已知函數(shù)f(x)=ax2+4x+b,其中a<0,a、b是實(shí)數(shù),設(shè)關(guān)于x的方程f(x)=0的兩根為x1,x2;f(x)=x的兩實(shí)根為α;β.

(1)若|α-β|=1,求a、b滿足的關(guān)系式;

(2)若a、b均為負(fù)整數(shù);且|α-β|=1,求f(x)解析式;

(3)試比較(x1+1)(x2+1)與7的大?。?1、已知平面區(qū)域上;坐標(biāo)x,y滿足|x|+|y|≤1

(1)畫(huà)出滿足條件的區(qū)域L0;并求出面積S;

(2)對(duì)區(qū)域L0作一個(gè)內(nèi)切圓M1,然后在M1內(nèi)作一個(gè)內(nèi)接與此圓與L0相同形狀的圖形L1,在L1內(nèi)繼續(xù)作圓M2;經(jīng)過(guò)無(wú)數(shù)次后,求所有圓的面積的和.

(提示公式:)32、取一張矩形的紙進(jìn)行折疊;具體操作過(guò)程如下:

第一步:先把矩形ABCD對(duì)折;折痕為MN,如圖(1)所示;

第二步:再把B點(diǎn)疊在折痕線MN上;折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得Rt△AB′E,如圖(2)所示;

第三步:沿EB′線折疊得折痕EF;如圖(3)所示;利用展開(kāi)圖(4)所示.

探究:

(1)△AEF是什么三角形?證明你的結(jié)論.

(2)對(duì)于任一矩形;按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.

(3)如圖(5);將矩形紙片ABCD沿EF折疊,使點(diǎn)A落在DC邊上的點(diǎn)A′處,x軸垂直平分DA,直線EF的表達(dá)式為y=kx-k(k<0)

①問(wèn):EF與拋物線y=有幾個(gè)公共點(diǎn)?

②當(dāng)EF與拋物線只有一個(gè)公共點(diǎn)時(shí),設(shè)A′(x,y),求的值.參考答案一、選擇題(共5題,共10分)1、D【分析】試題分析:A選項(xiàng)中周期是周期的一半,所以周期是故A不正確;B選項(xiàng)中所以周期為所以B不正確;C選項(xiàng)中令因?yàn)樗圆皇谴撕瘮?shù)周期,故C不正確;D選項(xiàng)中所以周期為故D正確??键c(diǎn):三角函數(shù)化簡(jiǎn)變形,周期公式【解析】【答案】D2、D【分析】試題分析:所以答案選擇考點(diǎn):指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性.【解析】【答案】D3、B【分析】【解析】考查直線斜率和傾斜角的關(guān)系。【解析】【答案】B4、B【分析】【分析】因?yàn)楣蔬xB。5、C【分析】解:設(shè)t=g(x)=x2-ax+3,則y=logt為減函數(shù);

若f(x)=log(x2-ax+3)在(-∞;1)上單調(diào)遞增;

則t=g(x)=x2-ax+3在(-∞;1)上單調(diào)遞減,且g(1)≥0;

即=≥1且1-a+3≥0;

則a≥2且a≤4;即2≤a≤4;

故選:C.

利用換元法結(jié)合復(fù)合函數(shù)單調(diào)性之間的關(guān)系進(jìn)行求解.

本題主要考查函數(shù)單調(diào)性的應(yīng)用,根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系,利用換元法結(jié)合對(duì)數(shù)函數(shù)和一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.【解析】【答案】C二、填空題(共9題,共18分)6、略

【分析】【解析】試題分析:顯然考點(diǎn):等比數(shù)列通項(xiàng)及求和【解析】【答案】37、略

【分析】

法一:令1-2x=3得x=-1,故有f(3)=(-1)2-1=0

故答案為0

法二:令1-2x=t,得x=代入得f(t)=()2-1,即f(x)=()2-1;

∴f(3)=()2-1=0;

故答案為:0.

【解析】【答案】法一:由題意,可令1-2x=3求得x的值,代入f(1-2x)=x2-1;即可求出f(3)的值;

法二:由題意可用換元法求出外層函數(shù)的解析式,令1-2x=t,得x=代入求出f(x)=()2-1;再求f(3)

8、略

【分析】

設(shè)所求直線的方程的斜率我為k;則直線的方程為:y-1=k(x-2)即kx-y+1-2k=0

所以原點(diǎn)(0,0)到所求直線的距離d==1,化簡(jiǎn)得:k(3k-4)=0,解得:k=0或k=

則所求直線的方程為:y=0或4x-3y-5=0.

故答案為:y=0或4x-3y-5=0.

【解析】【答案】設(shè)出所求直線的斜率;由該直線過(guò)A點(diǎn),寫(xiě)出該直線的方程,然后利用點(diǎn)到直線的距離公式表示出原點(diǎn)到所設(shè)直線的距離d,讓d=1列出關(guān)于k的方程,求出方程的解即可得到k的值,然后根據(jù)求出的斜率和A的坐標(biāo)寫(xiě)出直線的方程即可.

9、略

【分析】【解析】略【解析】【答案】(--3][1,+)10、-1或5【分析】【解答】x2-4x-5=(x-5)(x+1)=0,∴x=5或-1.

【分析】先求出函數(shù)對(duì)應(yīng)的方程的根,從而得出函數(shù)零點(diǎn)。11、圓【分析】【解答】建立平面直角坐標(biāo)系,不妨設(shè)兩定點(diǎn)分別為動(dòng)點(diǎn)為則由得即

整理得又所以;

故平面內(nèi)與兩定點(diǎn)距離之比為定值的點(diǎn)的軌跡是圓.

【分析】本題主要考查了軌跡方程,解決問(wèn)題的關(guān)鍵是根據(jù)所給條件建立平面直角坐標(biāo)系,然后得到軌跡方程,分析其幾何性質(zhì)得到其軌跡為圓.12、③【分析】【解答】解:①若l與m異面;m∥n,則l與n異面或相交,故不正確;

②若l∥α;α∥β,則l∥β或l?β,故不正確;

③若α⊥β;l⊥α,m⊥β,利用正方體模型,可得l⊥m,正確;

④若m∥α;m∥n,則n∥α或n?α,故不正確.

故答案為:③.

【分析】利用空間中直線與平面、平面與平面之間的位置關(guān)系,對(duì)4個(gè)選項(xiàng)分別進(jìn)行判斷,即可得出結(jié)論.13、略

【分析】解:根據(jù)條件:?UB={2};

∴A∪(?UB)={1;2,3}.

故答案為:{1;2,3}.

進(jìn)行補(bǔ)集;并集的運(yùn)算即可.

考查列舉法表示集合,全集、補(bǔ)集的概念,以及補(bǔ)集、并集的運(yùn)算.【解析】{1,2,3}14、略

【分析】解:隆脽

一組數(shù)據(jù)2x4610

的平均值是5

隆脿2+x+4+6+10=5隆脕5

解得x=3

隆脿

此組數(shù)據(jù)的方差S2=15[(2鈭?5)2+(3鈭?5)2+(4鈭?5)2+(6鈭?5)2+(10鈭?5)2]=8

隆脿

此組數(shù)據(jù)的標(biāo)準(zhǔn)差S=8=22

故答案為:22

由已知條件先求出x

的值;再計(jì)算出此組數(shù)據(jù)的方差,由此能求出標(biāo)準(zhǔn)差.

本題考查一組數(shù)據(jù)的標(biāo)準(zhǔn)差的求法,解題時(shí)要認(rèn)真審題,注意數(shù)據(jù)的平均數(shù)和方差公式的求法.【解析】22

三、證明題(共8題,共16分)15、略

【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;

即可得到結(jié)論;

(2)根據(jù)三角形相似的判定易證Rt△PCE∽R(shí)t△PAD,Rt△EBC∽R(shí)t△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,

∵PC是⊙O的切線;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽R(shí)t△PAD;

∴PC:PA=CE:AD;

又∵AB為⊙O的直徑;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽R(shí)t△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC?CE=PA?BE.16、略

【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;

(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

則=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四點(diǎn)共圓;

∴∠CFD=∠CAD.

(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四點(diǎn)共圓;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.17、略

【分析】【分析】延長(zhǎng)AM,過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長(zhǎng)AM;過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

從而四邊形OBFC為平行四邊形;

所以BM=MC.18、略

【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;

即可得到結(jié)論;

(2)根據(jù)三角形相似的判定易證Rt△PCE∽R(shí)t△PAD,Rt△EBC∽R(shí)t△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,

∵PC是⊙O的切線;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽R(shí)t△PAD;

∴PC:PA=CE:AD;

又∵AB為⊙O的直徑;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽R(shí)t△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC?CE=PA?BE.19、略

【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;

(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

則=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四點(diǎn)共圓;

∴∠CFD=∠CAD.

(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四點(diǎn)共圓;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.20、略

【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對(duì)稱(chēng)圖形,可讓覆蓋圓圓心與平行四邊形對(duì)角線交點(diǎn)疊合.

(2)“曲“化“直“.對(duì)比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】

證明:(1)如圖1;設(shè)ABCD的周長(zhǎng)為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;

則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周長(zhǎng)為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.

(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長(zhǎng)兩段,每段各長(zhǎng)l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G為圓心,長(zhǎng)為半徑的圓紙片可以覆蓋住整個(gè)線圈.21、略

【分析】【分析】延長(zhǎng)AM,過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長(zhǎng)AM;過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

從而四邊形OBFC為平行四邊形;

所以BM=MC.22、略

【分析】【分析】要證E為中點(diǎn),可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長(zhǎng)需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點(diǎn).

(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽R(shí)t△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=四、作圖題(共2題,共14分)23、解:程序框圖如下:

【分析】【分析】根據(jù)題目中的程序語(yǔ)言,得出該程序是順序結(jié)構(gòu),利用構(gòu)成程序框的圖形符號(hào)及其作用,即可畫(huà)出流程圖.24、解:如圖所示:

【分析】【分析】由幾何體是圓柱上面放一個(gè)圓錐,從正面,左面,上面看幾何體分別得到的圖形分別是長(zhǎng)方形上邊加一個(gè)三角形,長(zhǎng)方形上邊加一個(gè)三角形,圓加一點(diǎn).五、計(jì)算題(共4題,共12分)25、略

【分析】【分析】根據(jù)韋達(dá)定理求得設(shè)方程x2-x-1=0的二根分別為x1、x2,由韋達(dá)定理,得x1+x2=1,x1?x2=-1;然后將x1、x2分別代入方程x6-px2+q=0列出方程組,再通過(guò)解方程組求得pq的值.【解析】【解答】解:設(shè)方程x2-x-1=0的二根分別為x1、x2,由韋達(dá)定理,得x1+x2=1,x1?x2=-1;則。

x12+x22=(x1+x2)2-2x1?x2=1+2=3;

(x12)2+(x22)2=(x12+x22)2-2x12?x22=7.

將x1、x2分別代入方程x6-px2+q=0;得。

x16-px12+q=0①

x26-px22+q=0②

①-②;得。

(x16-x26)-p(x12-x22)=0;

【(x12)3-(x22)3】-p(x12-x22)=0;

(x12-x22)【(x12)2+(x22)2+x12?x22】-p(x12-x22)=0;

由于x1≠x2,則x12-x22≠0;所以化簡(jiǎn),得。

【(x12)2+(x22)2+x12?x22】-p=0;

則p=(x12)2+(x22)2+(x1?x2)2=7+(-1)2=8;

①+②;得。

(x16+x26)-8(x12+x22)+2q=0;

【(x12)3+(x22)3】-24+2q=0;

∴(x12+x22)【(x12)2+(x22)2-x12?x22】-24+2q=0;

∴3【(x12)2+(x22)2-(x1?x2)2】-24+2q=0;

∴3(7-1)-24+2q=0;解得。

q=3;

綜上所述;p=8,q=3.

故答案是:8、3.26、略

【分析】【分析】過(guò)C、D作出梯形的兩高,構(gòu)造出兩直角三角形,利用勾股定理和三角函數(shù)值求得兩直角三角形的另2邊,再加上CD,即為AB長(zhǎng),根據(jù)∠A的任意三角函數(shù)值即可求得度數(shù).【解析】【解答】解:作DE⊥AB于點(diǎn)E;CF⊥AB于點(diǎn)F;

則ED=CF=6;

因?yàn)锽C的坡度i=1:3;

∴BF=18;

∵AD=16;

∴AE=≈14.83;

∴AB=AE+BF+CD≈37.8米;

∵sinA=6÷16=0.375;

∴∠A=22°1′.27、略

【分析】【分析】先由平均數(shù)的公式計(jì)算出x的值,再根據(jù)方差的公式計(jì)算.一般地設(shè)n個(gè)數(shù)據(jù),x1,x2,xn的平均數(shù)為,=(x1+x2++xn),則方差S2=[(x1-)2+(x2-)2++(xn-)2].【解析】【解答】解:x=1×5-1-3-(-1)-2=0;

s2=[(1-1)2+(1-3)2+(1+1)2+(1-2)2+(1-0)2]=2.

故答案為2.28、解:∵f(x)=8+2x﹣x2∴g(x)=f(2﹣x2)=﹣x4+2x2+8

g'(x)=﹣4x3+4x

當(dāng)g'(x)>0時(shí),﹣1<x<0或x>1

當(dāng)g'(x)<0時(shí),x<﹣1或0<x<1

故函數(shù)g(x)的增區(qū)間為:(﹣1;0)和(1,+∞)

減區(qū)間為:(﹣∞;﹣1)和(0,1)

【分析】【分析】先求出函數(shù)g(x)的解析式,然后對(duì)函數(shù)g(x)進(jìn)行求導(dǎo),當(dāng)導(dǎo)數(shù)大于0時(shí)為單調(diào)增區(qū)間,當(dāng)導(dǎo)數(shù)小于0時(shí)單調(diào)遞減.六、綜合題(共4題,共28分)29、略

【分析】【分析】(1)首先構(gòu)造二次函數(shù):f(x)=(a1x+b1)2+(a2x+b2)2++(anx+bn)2=(a12+a22++an2)x2+2(a1b1+a2b2++anbn)x+(b12+b22++bn2),由(a1x+b1)2+(a2x+b2)2++(anx+bn)2≥0,即可得f(x)≥0,可得△=4(a1b1+a2b2++anbn)2-4(a12+a22++an2)(b12+b22++bn2)≤0,整理即可證得:(a12+a22++an2)?(b12+b22++bn2)≥(a1?b1+a2?b2++an?bn)2;

(2)利用(1)可得:(1+4+9)(x2+y2+z2)≥(x+2y+3z)2;又由x+2y+3z=6,整理求解即可求得答案;

(3)利用(1)可得:(2x2+y2+z2)(+1+1)≥(x+y+z)2,又由2x2+y2+z2=2;整理求解即可求得答案;

(4)因?yàn)楫?dāng)且僅當(dāng)==時(shí)等號(hào)成立,即可得當(dāng)且僅當(dāng)x==時(shí),x2+y2+z2取最小值,又由x+2y+3z=6,即可求得答案.【解析】【解答】解:(1)構(gòu)造二次函數(shù):f(x)=(a1x+b1)2+(a2x+b2)2++(anx+bn)2=(a12+a22++an2)x2+2(a1b1+a2b2++anbn)x+(b12+b22++bn2)≥0;

∴△=4(a1b1+a2b2++anbn)2-4(a12+a22++an2)(b12+b22++bn2)≤0;

即:(a12+a22++an2)?(b12+b22++bn2)≥(a1?b1+a2?b2++an?bn)2;

當(dāng)且僅當(dāng)==時(shí)等號(hào)成立;

(2)根據(jù)(1)可得:(1+4+9)(x2+y2+z2)≥(x+2y+3z)2;

∵x+2y+3z=6;

∴14(x2+y2+z2)≥36;

∴x2+y2+z2≥;

∴若x+2y+3z=6,則x2+y2+z2的最小值為;

(3)根據(jù)(1)可得:(2x2+y2+z2)(+1+1)≥(x+y+z)2;

∵2x2+y2+z2=2;

∴(x+y+z)2≤2×=5;

∴-≤x+y+z≤;

∴若2x2+y2+z2=2,則x+y+z的最大值為;

(4)∵當(dāng)且僅當(dāng)x==時(shí),x2+y2+z2取最小值;

設(shè)x===k;

則x=k;y=2k,z=3k;

∵x+2y+3z=6;

∴k+4k+9k=6;

解得:k=;

∴當(dāng)x2+y2+z2取最小值時(shí),x=,y=,z=.30、略

【分析】【分析】(1)根據(jù)f(x)=x的兩實(shí)根為α、β,可列出方程用a,b表示兩根α,β,根據(jù)|α-β|=1,可求出a、b滿足的關(guān)系式.

(2)根據(jù)(1)求出的結(jié)果和a、b均為負(fù)整數(shù),且|α-β|=1,可求出a,b;從而求出f(x)解析式.

(3)因?yàn)殛P(guān)于x的方程f(x)=0的兩根為x1,x2,用a和b表示出(x1+1)(x2+1),討論a,b的關(guān)系可比較(x1+1)(x2+1)與7的大小的結(jié)論.【解析】【解答】解:(1)∵f(x)=x;

∴ax2+4x+b=x;

α=,β=.

∵|α-β|=1;

∴=|a|;

∴a2+4ab-9=0;

(2)∵a、b均為負(fù)整數(shù),a2+4ab-9=0;

∴a(a+4b)=9,解得a=-1,b=-2.

∴f(x)=-x2+4x-2.

(3)∵關(guān)于x的方程f(x)=0的兩根為x1,x2;

∴ax2+4x+b=0

∴x1x2=,x1+x2=-.

∴(x1+1)(x2+1)=x1x2+x1+x2+1=-+1.

-+1-7=;

∵a<0;

當(dāng)b>6a+4時(shí),(x1+1)(x2+1)<7.

當(dāng)b=6a+4時(shí),(x1+1)(x2+1)=7.

當(dāng)b<6a+4時(shí),(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論