![白銀礦冶職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)實踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁](http://file4.renrendoc.com/view14/M07/15/16/wKhkGWd938OAG61fAAL5TWAhFCY151.jpg)
![白銀礦冶職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)實踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁](http://file4.renrendoc.com/view14/M07/15/16/wKhkGWd938OAG61fAAL5TWAhFCY1512.jpg)
![白銀礦冶職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)實踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁](http://file4.renrendoc.com/view14/M07/15/16/wKhkGWd938OAG61fAAL5TWAhFCY1513.jpg)
![白銀礦冶職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)實踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁](http://file4.renrendoc.com/view14/M07/15/16/wKhkGWd938OAG61fAAL5TWAhFCY1514.jpg)
![白銀礦冶職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)實踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁](http://file4.renrendoc.com/view14/M07/15/16/wKhkGWd938OAG61fAAL5TWAhFCY1515.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁白銀礦冶職業(yè)技術(shù)學(xué)院
《深度學(xué)習(xí)實踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、欠擬合也是機(jī)器學(xué)習(xí)中需要關(guān)注的問題。以下關(guān)于欠擬合的說法中,錯誤的是:欠擬合是指模型在訓(xùn)練數(shù)據(jù)和測試數(shù)據(jù)上的表現(xiàn)都不佳。欠擬合的原因可能是模型過于簡單或者數(shù)據(jù)特征不足。那么,下列關(guān)于欠擬合的說法錯誤的是()A.增加模型的復(fù)雜度可以緩解欠擬合問題B.收集更多的特征數(shù)據(jù)可以緩解欠擬合問題C.欠擬合問題比過擬合問題更容易解決D.欠擬合只在小樣本數(shù)據(jù)集上出現(xiàn),大規(guī)模數(shù)據(jù)集不會出現(xiàn)欠擬合問題2、假設(shè)正在進(jìn)行一個目標(biāo)檢測任務(wù),例如在圖像中檢測出人物和車輛。以下哪種深度學(xué)習(xí)框架在目標(biāo)檢測中被廣泛應(yīng)用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標(biāo)檢測3、在進(jìn)行特征工程時,需要對連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類的離散化D.基于決策樹的離散化4、機(jī)器學(xué)習(xí)在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法中,錯誤的是:機(jī)器學(xué)習(xí)可以用于文本分類、情感分析、機(jī)器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法錯誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計算資源D.機(jī)器學(xué)習(xí)在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和發(fā)展5、在機(jī)器學(xué)習(xí)中,模型的選擇和超參數(shù)的調(diào)整是非常重要的環(huán)節(jié)。通常可以使用交叉驗證技術(shù)來評估不同模型和超參數(shù)組合的性能。假設(shè)有一個分類模型,我們想要確定最優(yōu)的正則化參數(shù)C。如果采用K折交叉驗證,以下關(guān)于K的選擇,哪一項是不太合理的?()A.K=5,平衡計算成本和評估準(zhǔn)確性B.K=2,快速得到初步的評估結(jié)果C.K=10,提供更可靠的評估D.K=n(n為樣本數(shù)量),確保每個樣本都用于驗證一次6、在一個圖像生成的任務(wù)中,需要根據(jù)給定的描述或條件生成逼真的圖像??紤]到生成圖像的質(zhì)量、多樣性和創(chuàng)新性。以下哪種生成模型可能是最有潛力的?()A.生成對抗網(wǎng)絡(luò)(GAN),通過對抗訓(xùn)練生成逼真的圖像,但可能存在模式崩潰和訓(xùn)練不穩(wěn)定的問題B.變分自編碼器(VAE),能夠?qū)W習(xí)數(shù)據(jù)的潛在分布并生成新樣本,但生成的圖像可能較模糊C.自回歸模型,如PixelCNN,逐像素生成圖像,保證了局部一致性,但生成速度較慢D.擴(kuò)散模型,通過逐步去噪生成圖像,具有較高的質(zhì)量和多樣性,但計算成本較高7、在進(jìn)行自動特征工程時,以下關(guān)于自動特征工程方法的描述,哪一項是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的自動特征學(xué)習(xí)可以從原始數(shù)據(jù)中自動提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動特征工程需要大量的計算資源和時間,但可以提高特征工程的效率8、假設(shè)正在研究一個時間序列預(yù)測問題,數(shù)據(jù)具有季節(jié)性和趨勢性。以下哪種模型可以同時處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以9、在集成學(xué)習(xí)中,Adaboost算法通過調(diào)整樣本的權(quán)重來訓(xùn)練多個弱分類器。如果一個樣本在之前的分類器中被錯誤分類,它的權(quán)重會()A.保持不變B.減小C.增大D.隨機(jī)變化10、考慮一個情感分析任務(wù),判斷一段文本所表達(dá)的情感是積極、消極還是中性。在特征提取方面,可以使用詞袋模型、TF-IDF等方法。如果文本數(shù)據(jù)量較大,且包含豐富的語義信息,以下哪種特征提取方法可能表現(xiàn)更好?()A.詞袋模型,簡單直觀,計算速度快B.TF-IDF,考慮了詞的頻率和文檔的分布C.基于深度學(xué)習(xí)的詞向量表示,能夠捕捉語義和上下文信息D.以上方法效果相同,取決于模型的復(fù)雜程度11、某研究團(tuán)隊正在開發(fā)一個用于預(yù)測股票價格的機(jī)器學(xué)習(xí)模型,需要考慮市場的動態(tài)性和不確定性。以下哪種模型可能更適合處理這種復(fù)雜的時間序列數(shù)據(jù)?()A.長短時記憶網(wǎng)絡(luò)(LSTM)結(jié)合注意力機(jī)制B.門控循環(huán)單元(GRU)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)的組合C.隨機(jī)森林與自回歸移動平均模型(ARMA)的融合D.以上模型都有可能12、假設(shè)正在開發(fā)一個用于圖像識別的深度學(xué)習(xí)模型,需要選擇合適的超參數(shù)。以下哪種方法可以用于自動搜索和優(yōu)化超參數(shù)?()A.隨機(jī)搜索B.網(wǎng)格搜索C.基于模型的超參數(shù)優(yōu)化D.以上方法都可以13、在機(jī)器學(xué)習(xí)中,模型的可解釋性也是一個重要的問題。以下關(guān)于模型可解釋性的說法中,錯誤的是:模型的可解釋性是指能夠理解模型的決策過程和預(yù)測結(jié)果的能力。可解釋性對于一些關(guān)鍵領(lǐng)域如醫(yī)療、金融等非常重要。那么,下列關(guān)于模型可解釋性的說法錯誤的是()A.線性回歸模型具有較好的可解釋性,因為它的決策過程可以用公式表示B.決策樹模型也具有一定的可解釋性,因為可以通過樹形結(jié)構(gòu)直觀地理解決策過程C.深度神經(jīng)網(wǎng)絡(luò)模型通常具有較低的可解釋性,因為其決策過程非常復(fù)雜D.模型的可解釋性和性能是相互矛盾的,提高可解釋性必然會降低性能14、假設(shè)我們正在訓(xùn)練一個神經(jīng)網(wǎng)絡(luò)模型,發(fā)現(xiàn)模型在訓(xùn)練集上表現(xiàn)很好,但在測試集上表現(xiàn)不佳。這可能是由于以下哪種原因()A.訓(xùn)練數(shù)據(jù)量不足B.模型過于復(fù)雜,導(dǎo)致過擬合C.學(xué)習(xí)率設(shè)置過高D.以上原因都有可能15、在進(jìn)行聚類分析時,有多種聚類算法可供選擇。假設(shè)我們要對一組客戶數(shù)據(jù)進(jìn)行細(xì)分,以發(fā)現(xiàn)不同的客戶群體。以下關(guān)于聚類算法的描述,哪一項是不準(zhǔn)確的?()A.K-Means算法需要預(yù)先指定聚類的個數(shù)K,并通過迭代優(yōu)化來確定聚類中心B.層次聚類算法通過不斷合并或分裂聚類來構(gòu)建聚類層次結(jié)構(gòu)C.密度聚類算法(DBSCAN)可以發(fā)現(xiàn)任意形狀的聚類,并且對噪聲數(shù)據(jù)不敏感D.所有的聚類算法都能保證得到的聚類結(jié)果是最優(yōu)的,不受初始條件和數(shù)據(jù)分布的影響16、在使用深度學(xué)習(xí)進(jìn)行圖像分類時,數(shù)據(jù)增強(qiáng)是一種常用的技術(shù)。假設(shè)我們有一個有限的圖像數(shù)據(jù)集。以下關(guān)于數(shù)據(jù)增強(qiáng)的描述,哪一項是不正確的?()A.可以通過隨機(jī)旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪圖像來增加數(shù)據(jù)的多樣性B.對圖像進(jìn)行色彩變換、添加噪聲等操作也屬于數(shù)據(jù)增強(qiáng)的方法C.數(shù)據(jù)增強(qiáng)可以有效地防止模型過擬合,但會增加數(shù)據(jù)標(biāo)注的工作量D.過度的數(shù)據(jù)增強(qiáng)可能會導(dǎo)致模型學(xué)習(xí)到與圖像內(nèi)容無關(guān)的特征,影響模型性能17、某研究團(tuán)隊正在開發(fā)一個用于醫(yī)療診斷的機(jī)器學(xué)習(xí)系統(tǒng),需要對疾病進(jìn)行預(yù)測。由于醫(yī)療數(shù)據(jù)的敏感性和重要性,模型的可解釋性至關(guān)重要。以下哪種模型或方法在提供可解釋性方面具有優(yōu)勢?()A.深度學(xué)習(xí)模型B.決策樹C.集成學(xué)習(xí)模型D.強(qiáng)化學(xué)習(xí)模型18、在一個回歸問題中,如果數(shù)據(jù)存在多重共線性,以下哪種方法可以用于解決這個問題?()A.特征選擇B.正則化C.主成分回歸D.以上方法都可以19、在分類問題中,如果正負(fù)樣本比例嚴(yán)重失衡,以下哪種評價指標(biāo)更合適?()A.準(zhǔn)確率B.召回率C.F1值D.均方誤差20、假設(shè)正在開發(fā)一個用于情感分析的深度學(xué)習(xí)模型,需要對模型進(jìn)行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機(jī)梯度下降(SGD)B.自適應(yīng)矩估計(Adam)C.牛頓法D.共軛梯度法21、在一個異常檢測的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點。以下哪種異常檢測算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點,但對參數(shù)敏感B.一類支持向量機(jī)(One-ClassSVM),適用于高維數(shù)據(jù),但對數(shù)據(jù)分布的假設(shè)較強(qiáng)C.基于聚類的異常檢測,將遠(yuǎn)離聚類中心的點視為異常,但聚類效果對結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點選擇合適的方法或進(jìn)行組合22、假設(shè)正在開發(fā)一個智能推薦系統(tǒng),用于向用戶推薦個性化的商品。系統(tǒng)需要根據(jù)用戶的歷史購買記錄、瀏覽行為、搜索關(guān)鍵詞等信息來預(yù)測用戶的興趣和需求。在這個過程中,特征工程起到了關(guān)鍵作用。如果要將用戶的購買記錄轉(zhuǎn)化為有效的特征,以下哪種方法不太合適?()A.統(tǒng)計用戶購買每種商品的頻率B.對用戶購買的商品進(jìn)行分類,并計算各類別的比例C.直接將用戶購買的商品名稱作為特征輸入模型D.計算用戶購買商品的時間間隔和購買周期23、在一個分類問題中,如果數(shù)據(jù)分布不均衡,以下哪種方法可以用于處理這種情況?()A.過采樣B.欠采樣C.生成對抗網(wǎng)絡(luò)(GAN)生成新樣本D.以上方法都可以24、假設(shè)正在進(jìn)行一個異常檢測任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以25、在一個客戶流失預(yù)測的問題中,需要根據(jù)客戶的消費行為、服務(wù)使用情況等數(shù)據(jù)來提前預(yù)測哪些客戶可能會流失。以下哪種特征工程方法可能是最有幫助的?()A.手動選擇和構(gòu)建與客戶流失相關(guān)的特征,如消費頻率、消費金額的變化等,但可能忽略一些潛在的重要特征B.利用自動特征選擇算法,如基于相關(guān)性或基于樹模型的特征重要性評估,但可能受到數(shù)據(jù)噪聲的影響C.進(jìn)行特征變換,如對數(shù)變換、標(biāo)準(zhǔn)化等,以改善數(shù)據(jù)分布和模型性能,但可能丟失原始數(shù)據(jù)的某些信息D.以上方法結(jié)合使用,綜合考慮數(shù)據(jù)特點和模型需求二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述機(jī)器學(xué)習(xí)在旅游規(guī)劃中的路線推薦。2、(本題5分)解釋機(jī)器學(xué)習(xí)在酒店管理中的客戶滿意度預(yù)測。3、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行颶風(fēng)路徑預(yù)測。4、(本題5分)說明機(jī)器學(xué)習(xí)在口腔醫(yī)學(xué)中的診斷輔助。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)利用神經(jīng)退行性疾病相關(guān)數(shù)據(jù)研究疾病的發(fā)病機(jī)制和治療策略。2、(本題5分)使用支持向量機(jī)(SVM)對圖像進(jìn)行分類,例如區(qū)分貓和狗的圖片。3、(本題5分)依據(jù)水產(chǎn)養(yǎng)殖數(shù)據(jù)優(yōu)化養(yǎng)殖環(huán)境和提高養(yǎng)殖效益
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子商務(wù)與城市共同配送的協(xié)同發(fā)展研究
- 2025年貴州省建筑安全員-C證考試(專職安全員)題庫附答案
- 電子商務(wù)中的網(wǎng)絡(luò)直播營銷模式分析
- 2025年邵陽貨運從業(yè)資格證模擬考試
- 2025年山南下載貨運從業(yè)資格證模擬考試系統(tǒng)試題
- 現(xiàn)代簡約風(fēng)格在智能辦公家具中的應(yīng)用
- 2025年貨運從業(yè)資格證答題軟件
- 電商直播帶貨銷售模式的實踐與思考
- 生態(tài)旅游開發(fā)的環(huán)境影響評價
- 電力安全教育在遠(yuǎn)程辦公環(huán)境中的新發(fā)展
- absciex lc ms qtrapanalyst軟件定量操作Analyst在如右圖的彈出窗口
- 特種作業(yè)人員安全技術(shù)培訓(xùn)考核管理規(guī)定
- 骨科的疼痛管理
- 前列腺癌診斷治療指南
- 中國銀行招聘筆試真題「英語」
- 江蘇省2023年對口單招英語試卷及答案
- GB/T 35506-2017三氟乙酸乙酯(ETFA)
- GB/T 25784-20102,4,6-三硝基苯酚(苦味酸)
- 特種設(shè)備安全監(jiān)察指令書填寫規(guī)范(特種設(shè)備安全法)參考范本
- 硬筆書法全冊教案共20課時
- 《長方形的面積》-完整版課件
評論
0/150
提交評論