




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁大理大學(xué)
《卡通形象設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個基于計算機視覺的機器人導(dǎo)航系統(tǒng)中,需要根據(jù)環(huán)境圖像來規(guī)劃機器人的路徑。以下哪種視覺導(dǎo)航方法可能更適合復(fù)雜動態(tài)環(huán)境?()A.基于地圖的導(dǎo)航B.基于視覺里程計的導(dǎo)航C.基于深度學(xué)習(xí)的端到端導(dǎo)航D.以上都是2、在計算機視覺的目標跟蹤任務(wù)中,假設(shè)要在一段視頻中持續(xù)跟蹤一個移動的物體,例如跟蹤一只飛行的鳥。物體可能會被其他物體遮擋,并且外觀可能會發(fā)生變化。以下哪種目標跟蹤方法在這種復(fù)雜情況下更有可能成功?()A.基于卡爾曼濾波的跟蹤方法,預(yù)測物體的位置和速度B.基于深度學(xué)習(xí)的Siamese網(wǎng)絡(luò)跟蹤方法C.只在視頻的起始幀確定目標位置,后續(xù)幀不再跟蹤D.隨機選擇視頻中的區(qū)域作為跟蹤目標3、在計算機視覺的發(fā)展中,模型的可解釋性是一個重要的研究方向。以下關(guān)于模型可解釋性的描述,不準確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對于建立用戶對模型的信任和確保模型的公正性具有重要意義C.一些可視化技術(shù),如特征圖可視化和類激活映射,可以幫助解釋模型的決策過程D.目前的計算機視覺模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)4、計算機視覺中的語義分割任務(wù)旨在為圖像中的每個像素分配一個類別標簽。假設(shè)要對醫(yī)學(xué)圖像中的病變區(qū)域進行精確分割,以下哪種技術(shù)可能對提高分割精度有較大幫助?()A.使用更深的卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)B.引入多尺度特征融合C.增加訓(xùn)練數(shù)據(jù)中的噪聲D.減少網(wǎng)絡(luò)中的參數(shù)數(shù)量5、在進行計算機視覺的三維重建時,需要從多個視角的圖像中恢復(fù)物體的三維形狀和結(jié)構(gòu)。假設(shè)要對一個復(fù)雜的古建筑進行三維重建,圖像采集存在視角偏差和部分遮擋。以下哪種三維重建方法在處理這種不完整和有噪聲的數(shù)據(jù)時效果較好?()A.基于立體視覺的重建B.基于運動恢復(fù)結(jié)構(gòu)(SfM)的重建C.基于激光掃描的重建D.基于深度學(xué)習(xí)的重建6、計算機視覺中的虛擬現(xiàn)實(VR)和增強現(xiàn)實(AR)應(yīng)用需要實時生成逼真的視覺效果。假設(shè)要在一個VR游戲中為玩家提供沉浸式的視覺體驗,或者在AR應(yīng)用中準確地將虛擬物體與現(xiàn)實場景融合。以下哪種計算機視覺技術(shù)在實現(xiàn)這些效果時至關(guān)重要?()A.實時渲染技術(shù)B.空間定位與追蹤技術(shù)C.三維重建與建模技術(shù)D.以上技術(shù)綜合應(yīng)用7、計算機視覺中的場景理解是對整個圖像場景的語義和結(jié)構(gòu)進行分析和理解。以下關(guān)于場景理解的描述,不準確的是()A.場景理解需要綜合考慮物體、空間關(guān)系、上下文信息等多個方面B.可以通過構(gòu)建場景圖來表示場景中的實體和關(guān)系,輔助場景理解C.場景理解在智能導(dǎo)航、虛擬環(huán)境構(gòu)建和圖像編輯等領(lǐng)域具有潛在的應(yīng)用價值D.場景理解是一個已經(jīng)完全解決的問題,不存在任何技術(shù)難題8、在計算機視覺的姿態(tài)估計任務(wù)中,例如估計人體關(guān)節(jié)的位置和姿態(tài),以下哪種方法可能在精度和實時性之間取得較好的平衡?()A.基于模型的方法B.基于深度學(xué)習(xí)的回歸方法C.基于深度學(xué)習(xí)的分類方法D.以上都不是9、在計算機視覺的目標跟蹤任務(wù)中,需要在連續(xù)的圖像幀中持續(xù)跟蹤一個特定的目標。假設(shè)要跟蹤一個在運動場上快速移動且形狀變化的運動員,同時存在其他相似物體的干擾。以下哪種目標跟蹤算法在這種具有挑戰(zhàn)性的場景下表現(xiàn)更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C.基于深度學(xué)習(xí)的跟蹤D.基于均值漂移的跟蹤10、在計算機視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴重噪聲污染的圖像中的噪聲,同時盡可能保留圖像的細節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學(xué)習(xí)的圖像去噪模型,如DnCNND.不進行任何去噪處理,保留原始噪聲圖像11、在計算機視覺中,目標檢測是一項重要任務(wù)。假設(shè)要在一張包含多種物體的圖像中準確檢測出汽車的位置和類別。以下關(guān)于目標檢測算法的描述,正確的是:()A.傳統(tǒng)的基于特征提取和分類器的方法在復(fù)雜場景下檢測效果優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的FasterR-CNN算法通過生成候選區(qū)域和分類回歸,能夠?qū)崿F(xiàn)高精度的目標檢測C.目標檢測算法只關(guān)注物體的外觀特征,不考慮物體之間的空間關(guān)系D.所有的目標檢測算法對于小目標的檢測都具有同樣出色的性能12、在計算機視覺的圖像特征提取中,假設(shè)要提取對光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計算復(fù)雜度高,實時性差B.HOG特征對光照變化適應(yīng)性強,但對旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達能力有限D(zhuǎn).沒有一種特征提取方法能夠同時滿足對光照、旋轉(zhuǎn)和縮放的不變性要求13、在計算機視覺的遙感圖像分析中,假設(shè)要從衛(wèi)星遙感圖像中提取土地利用信息,以下哪種技術(shù)可能對區(qū)分不同類型的土地覆蓋有幫助?()A.高光譜分析B.紋理分析C.形狀分析D.以上都有可能14、計算機視覺中的場景理解任務(wù)旨在理解圖像或視頻中的整體場景信息。假設(shè)要理解一張城市街道的圖片中的場景。以下關(guān)于場景理解的描述,哪一項是錯誤的?()A.可以通過對物體、人物和環(huán)境的分析來理解場景的語義信息B.深度學(xué)習(xí)中的語義分割技術(shù)可以幫助區(qū)分場景中的不同區(qū)域和物體類別C.場景理解只需要考慮圖像中的視覺元素,不需要考慮上下文和先驗知識D.可以結(jié)合地理信息和時間信息,進一步豐富對場景的理解15、在計算機視覺的人臉識別任務(wù)中,需要應(yīng)對姿態(tài)、表情和光照等變化。假設(shè)要構(gòu)建一個能夠在不同環(huán)境下準確識別人臉的系統(tǒng),以下哪種人臉識別方法在處理這些變化時具有更高的準確性和魯棒性?()A.基于特征點的人臉識別B.基于模板匹配的人臉識別C.基于深度學(xué)習(xí)的人臉識別D.基于幾何形狀的人臉識別16、計算機視覺中的動作識別是對視頻中的人體動作進行分類和理解。假設(shè)我們要分析一段體育比賽的視頻,識別其中運動員的各種動作,以下哪種方法能夠有效地捕捉動作的時空特征?()A.基于手工特征和分類器的方法B.基于深度學(xué)習(xí)的時空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法17、計算機視覺中的光流估計是計算圖像中像素的運動信息。以下關(guān)于光流估計的敘述,不正確的是()A.光流估計可以用于視頻中的運動分析、目標跟蹤和動作識別等任務(wù)B.基于深度學(xué)習(xí)的光流估計方法在精度和速度上都有了很大的提升C.光流估計只對勻速運動的物體有效,對于復(fù)雜的非勻速運動估計不準確D.光流估計的結(jié)果可以為后續(xù)的計算機視覺任務(wù)提供重要的運動線索18、計算機視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計的特征,如SIFT和HOG,在任何情況下都比深度學(xué)習(xí)自動學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)到圖像的多層次特征,具有很強的表達能力C.特征提取的結(jié)果對后續(xù)的圖像分類和目標檢測任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要19、計算機視覺中的行人重識別任務(wù)是在不同攝像頭中識別出特定的行人。假設(shè)要在一個大型火車站中尋找一個走失的兒童。以下關(guān)于行人重識別的描述,哪一項是不準確的?()A.可以利用行人的服裝顏色、款式和攜帶物品等特征進行重識別B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法可以學(xué)習(xí)行人的特征表示,提高重識別的準確率C.行人重識別不受行人姿態(tài)變化和攝像頭視角差異的影響D.可以通過構(gòu)建大規(guī)模的行人數(shù)據(jù)集進行訓(xùn)練,提升模型的泛化能力20、在計算機視覺的圖像檢索任務(wù)中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)圖像。假設(shè)要從一個大型的圖像庫中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項是不正確的?()A.可以基于圖像的內(nèi)容特征,如顏色、形狀和紋理等,進行相似性度量和檢索B.深度學(xué)習(xí)模型能夠提取更具語義和判別力的特征,提高圖像檢索的準確性C.圖像檢索的結(jié)果只取決于圖像的特征表示,與檢索算法的效率無關(guān)D.可以結(jié)合用戶的反饋和交互,不斷優(yōu)化圖像檢索的結(jié)果二、簡答題(本大題共5個小題,共25分)1、(本題5分)解釋計算機視覺在珠寶鑒定中的作用。2、(本題5分)解釋計算機視覺中無監(jiān)督學(xué)習(xí)在圖像特征提取中的應(yīng)用。3、(本題5分)描述計算機視覺在旱災(zāi)監(jiān)測中的應(yīng)用。4、(本題5分)解釋計算機視覺在標準化服務(wù)中的應(yīng)用。5、(本題5分)描述計算機視覺在海岸帶監(jiān)測中的應(yīng)用。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某餐飲品牌的外賣菜單設(shè)計,觀察其如何通過菜品圖片、描述和價格設(shè)置,提高點餐效率和顧客滿意度。2、(本題5分)研究某藝術(shù)學(xué)院的畢業(yè)作品展海報設(shè)計,分析其作品展示、展覽信息、藝術(shù)氛圍如何吸引觀眾參觀。3、(本題5分)某城市馬拉松比賽的宣傳海報以奔跑的人群和城市風(fēng)景為主題。請分析海報在激發(fā)參賽熱情、宣傳城市形象、吸引贊助商方面的手法和成效,以及如何根據(jù)不同城市的特色進行設(shè)計。4、(本題5分)研究一款環(huán)保主題的公益海報設(shè)計,剖析其如何運用視覺語言呼吁人
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程施工合同正規(guī)版本
- 交通事故賠償協(xié)商合同范本
- 幼兒園入園托管合同書
- 重慶新版服務(wù)合同標準范本
- 11爸爸媽媽在我心中 第1課時(教學(xué)設(shè)計)-部編版道德與法治三年級上冊
- Fantastic animals繪本融合(教學(xué)設(shè)計)-2023-2024學(xué)年外研版(一起)英語六年級下冊
- 勞動合同解除合同
- 20《蜘蛛開店》教學(xué)設(shè)計-2024-2025學(xué)年語文二年級下冊統(tǒng)編版
- 運輸代理合同范文
- 戒煙保證金合同協(xié)議
- 患者搬運操作并發(fā)癥的預(yù)防
- 云南省紅河州市級名校2024年中考聯(lián)考數(shù)學(xué)試題含解析
- JBT 3135-2024 鍍銀圓銅線(正式版)
- 否定副詞“不”和“沒有”比較研究
- 幼兒園木工坊安全教育
- 內(nèi)科主任年終述職報告
- 船舶起重安全管理規(guī)定規(guī)定培訓(xùn)
- 2024年不停電電源UPS相關(guān)項目營銷計劃書
- 智慧農(nóng)業(yè)中的農(nóng)業(yè)機械與設(shè)備管理技術(shù)
- 公司SWOT分析表模板
- 解決問題的工作方案
評論
0/150
提交評論