版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Mcsey
&company
ConsumerPackagedGoodsPractice
HowbeautyplayerscanscalegenAIin2025
BeautybrandsandretailershavealreadybeguntestinggenAI.Toscaletheseexperimentsquickly,beautyplayersshouldfocusonhigh-valueusecasesandcustomizegenAItoolstomeettheirneeds.
ThisarticleisacollaborativeeffortbyAnnaCheca,KristiWeaver,MeganPacchia,SaraHudson,
andWeiWeiLiu,withAlexisWolferandAnaBujosa,representingviewsfromMcKinsey’sConsumerPackagedGoodsPractice.
January2025
Beautyisnolongerintheeyeofthebeholder;it’satthefingertipsofthegenerativeAI(genAI)prompter.GenAIcouldadd$9billionto$10billiontotheglobaleconomybasedonitsimpactonthebeautyindustryalone,1andearlymovershavealreadybeguntestingthetechnology.But
scalingtheseexperimentswillbechallenging,giventhevelocityofgenAIinnovation.
Thegapbetweenthe
laggardsandleadersinthebeautyindustry
willonlygrowonceleaderssuccessfullydeploygenAIatscale.Thefastwillbecomefaster,moreresponsive,andbetterequippedtoanticipateanddeliverwhatconsumerswant,whilethoseleftbehindmayfindit
hardertoholdontosliversofmarketshare.
BeautyplayerswhofocusonpriorityusecasesandcustomizinggenAItomeettheirneedscanhelp
realizethetechnology’sfullpotential
.ThisarticleoutlinesfourgenAIusecasesthatbeautyplayerscanprioritize,explainshowtobringgenAItotheorganization,andlaysoutasetof
imperativestosupporttheuseofgenAIinbeautyoverthelongterm.
FourusecasesofgenAIinbeauty
MorethanadozengenAIusecasesthatapplytothebroaderconsumersectoralsoapplyto
beauty.Theseusecasesspantheorganizationfromfronttoback,includingfunctionsfromuserexperiencetocustomersupport(table).
Toprioritizetheusecases,weconsiderthatthebeautysectorreliesonspeedinbringingproductstomarketandrespondingtoconsumerfeedback.Onthatbasis,fourgenAIusecasesarelikelytohavethegreatestimpact:hyperpersonalizedtargeting,experientialproductdiscovery,rapidpackaging-conceptdevelopment,andinnovativeproductdevelopment.TheseemploygenAI
toolsatvariousstagesofadoption.Some(forexample,genAIcustomerchatbots)arealreadyinfairlywideuseamongbeautyplayers,whereasothersarenascentbutpromising.
Hyperpersonalizedtargeting
Oneofthemostimportantmovesabeautybrandcanmaketosurviveinthecompetitive
beautysectoristodevelopauniquevalueproposition.Butbeautyplayersmustalsoensurethattheproductstheyhavethoughtfullypositionedreachtheconsumerswhowillbemostreceptivetothem.
Today,mostbeautycompaniescanaffordtotargetonlyahandfulofconsumersegments
becausetheyhavelimitedcapabilitiestopersonalizemessagesonabiggerscale.Thisbroadapproachtoconsumersegmentationleavesmuchofthemarketuntapped.ButwithgenAI,beautybrandscancreatehyperpersonalizedmarketingmessages,whichcouldimprove
conversionratesbyupto40percent,basedonourobservations.
AIcananalyzelargeconsumerdatasets,detectpatterns,andcreatemicrosegmentsbased
onpatternrecognitionalgorithms.Fromthere,abeautybrandcantrainitsgenAIplatform
usingavarietyofinputs,includingcustomerdata,inputsthatdescribethebrandvoice,and
productinformation.Whenenteringnewmarkets,beautybrandscantraingenAImodels
oninternalproductdataaswellasexternalmarketresearch,suchascustomersurveys.GenAIcanthencreateandtestvariationsoftextandimagestoseewhatresonatesbestwitheach
consumersegment.
1“
TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier
,”McKinsey,June14,2023.Thebeautymarketisdefinedasskincare,fragrance,makeup,andhaircare.FiguresassumearelativelyhighrangeofgenAIimpactonconsumerpackagedgoods(1.4to2.3percentoftotalindustryrevenue)becauseofthehighimpactofmarketingandsalesstrategiesinbeauty.
HowbeautyplayerscanscalegenAIin20252
Table
BeautyplayerscanusegenerativeAIacrosstheirconsumer-facingfunctionsandwithintheirinternalvaluechain.
Front
Middle
Consumerinsightsanduserexperience
Trendidentificationandsociallistening(eg,risingtrends,
sentimentanalysison
existingproducts,assortmentvs
competitors)
Microsegmentationandcomprehensiveconsumerpersonasbasedonconsumerdata
Dynamic‘clienteling’forretailstore
associates(eg,
summarizedcustomerinformation)
Marketing
Creativecontent
generationand
versioning(creation,editing,and
translationof,eg,
productimages,
productdescriptions,socialmediaads)
Experiential
productdiscovery(eg,synthesisof
productreviews,
conversational
websiteexperienceforeasybrowsing)
Hyperpersonalizedtargeting(eg,
streamlined
customerprofiles,individualized
recommendations,offers)
Mediaoptimization(towardhigher-ROIchannels),media
generation,andSEOoptimization
Innovation
Rapidpackaging-concept
development(eg,digitalproduct
packagingdesigns,3Dvisualmodels)
Innovativeproductdevelopment
throughquickly
testingcombinationsofingredientsor
chemicals
Storedesignandplanning(eg,
AI-generatedstorelayoutoptionsforinspiration,storeofthefuture)
Technology
Codeautomation
(eg,codegeneration,translation,
refactoring,review)
andqualityassurancetestingtoensure
high-qualitycode
Productmanagercopilottosupportcreationofkey
documents(eg,
PRFAQ1),planning,andbacklog
prioritizationandreporting
Back
Corporatebusinessfunctions
Performanceanalyticsandreporting(eg,campaign
performance,
e-commercemetrics,financereporting,
demandplanning)
Internalsearchandtaskautomationforemployees(eg,keyproductinsights,
applicationsforHR
benefits,requestsfortechreplacement)
Onboardingand
training(eg,conciselearningmaterialstoelevateperformance)
Recruiting
(eg,firstdraftofjobdescriptions,
screeningof
applicants,targetedinterviewquestions)
Salesandcustomersupport
Pre-callpreparationforsalesor
customeragent(eg,prepautomationforsalespitches,AI
role-playfortraining)
During-callsupport(eg,recommendations
basedonpastinteractions,
automatedcustomerservicechatbot)
Post-calltranscriptandperformance
analytics,including
adhocreportgenerationand
overarchinginsights
HowbeautyplayerscanscalegenAIin20253
Considerthehypotheticalautomatedtextsthatmightbedeliveredtoanimaginarycustomer
namedCamille.ThebeautybrandknowsthatCamillelivesinFrance,hasalowannualspend,
andrecentlypurchasedafacesunscreen.Camillehasrespondedpositivelytopromotionsinthepast.BeforegenAI,anautomatedtexttoCamillemightsay,“Excitingnews!Newproductsare
here.Takeupto20percentoffwhenyoushopsale.”AftergenAI,theautomatedtextmightsay,“Bonjour,Camille!Didyouknowthatourspecialcleansingfoamforfacesunscreenremovalis
now20percentoff?Itwillpairperfectlywithyourrecentfacesunscreenpurchase.”
MarketingspecialistsshouldreviewAI-generatedmessagesbeforetheyaresenttoensuretheyreflectthebrand’sethosandvaluepropositionwhileavoidingplagiarismorpotentiallyharmful
connotations.Somemessagesthatseeminnocuouscanbedetrimentaltoabrand’simage.In
thepreviousexample,thegen-AI-createdgreetingmighthavesaid,“Goodevening,lovelylady,”insteadof“Bonjour.”Acustomermayfindthetoneofthismessageoffensiveorinappropriate,orthemessagemightbeatoddswiththebrand’soverallethos.ThemarketingteamshoulddeliverfeedbacktothegenAImodel—perhapsratingitsoutputswithathumbs-uporthumbs-down
mechanismandenteringdetailedcommentsinfree-textfields.ThegenAIplatformcanthenprocessthefeedbackandconvertitintonewtrainingdata.
BeautybrandswillalsoneedtointegratetheirgenAImodelswithassetsfromtheirdigital-asset-management(DAM)systems,whichserveastherepositoryforallthedigitalcreativeassetsa
branduses,aswellasintegratethemodelswiththebrand’scampaignmanagementtools.GenAIcancategorizethecreativeassetsintheDAMsystem—ataskthatwouldotherwisehave
tobedonemanually.Thisautomationfreesuptimeforthemarketingteamtofocusonhigher-valuetasks.
Evenastheycontinuetoworkwithmarketingagenciestodeveloptheirbrandstrategyand
deliverspecializedcampaigns,largebeautyenterprisesmightconsiderinvestinginin-househyperpersonalizationcapabilities.Thiswouldoffertwomainadvantages:companiescan
usetheirownconsumerdatatotraingenAImodels,andtheycancreateandtestpersonalizedcommunicationswithgreaterspeedandagility.
Experientialproductdiscovery
Despitethetech-poweredinnovationsinconsumerproductdiscoveryoverthepastfewyears,
thereisampleroomforimprovement.Thefirstgenerationofconsumerchatbots,forinstance,providerelativelyrigidanswersandcanbefrustratingforconsumerstouse.Whenaconsumer
asksforarecommendationforanewblushforadarkercomplexion,forexample,achatbotmightgiveagenericlistofproducts,ratherthanpersonalizingtheconversationforaspecificshopperandengagingthemindeeperconversation.Virtualtry-onsarehelpfulbutcanbeglitchyorfailtoaccuratelyreflectwhataproductwouldlooklikeonaconsumer.Inthesecases,onlinepurchasesoftencanleadtocostlyreturns,sincereturnedbeautyproductsgenerallycannotberesold.
Gen-AI-poweredchatbotscanhelpimprovetheshoppingjourneyanddecreasethelikelihoodofreturns.Theselargelanguagemodel(LLM)chatbots,whicharetrainedonproductdataand
consumerpreferences,canrespondtoawidervarietyofquestionsandoffermorepersonalizedrecommendations,bothofwhichcanimproveconversionrates.Onegloballifestyleplayer
developedagen-AI-poweredshoppingassistantandsawitsconversionratesincreasebyasmuchas20percent.
HowbeautyplayerscanscalegenAIin20254
Thevirtualtry-onexperience—whichhasalreadyprovensuccessfulinotherconsumercategories,
suchasaccessoriesandeyeglasses—mightalsobeenhancedwithgenAI.Usingthesame
technologythatpowersimage-generatinggenAItools,consumerscanseethelookofdifferentproductsontheirskinindifferentsettingsorseethepotentialbenefitsaproductcouldhaveto
theirappearanceovertime.Anonlineshopperwhowishestolightendarkspots,forexample,couldvirtuallytryonabrand’sspot-lighteningserumbyuploadingaphotoonabeautyplayer’swebsiteandrunningasimulationoftheserum’spossibleeffectontheirskinoverseveralmonths.
GenAIcouldalsoenhanceexperientialproductdiscoveryinphysicalstores.Today,interactivetouchscreenmonitorsinstorescanshowproductsavailablebothin-storeandonline,allowingcustomerstobrowsethroughSKUs,selectitemstheywanttoseeinperson,orscanQRcodesforexclusiveoffers.Evenwiththeirlimitedfunctionality,thesescreenshavebeenshownto
improvethein-storeshoppingexperienceandconversionrates2GenAIcanboostthe
effectivenessofthesescreens.Forexample,whenashopperwhohaslocationservicesenabledonabeautyplayer’sappwalksintothecompany’sstore,genAIcouldgeneratecontent
personalizedtothatconsumerbasedoncustomerprofileandpurchasehistory.Givenwhatweknow
abouttheeffectivenessofpersonalizedcontent
,theseprinciplescouldtranslatetothestoresetting,thoughlarge-scaleimplementationhasn’thappenedyet.
Rapidpackaging-conceptdevelopment
Whenevaluatingabeautyproduct,consumersconsiderboththeproductitselfanditsbrandingandpackaging.Beautybrandstypicallyspendmonthsdevelopingnewbrandingandpackaging
concepts—aprocessthattypicallyrequiresdesigners,copyeditors,strategists,andpackagingexpertstoiterateonideas.
GenAIwouldn’tnecessarilyeliminatethisprocess,butitcoulddramaticallyaccelerateit.Here’showitcouldwork.ApackagingdesignerasksagenAIplatformthefollowingprompt:“Showme
fivepackagingoptionsforanighttimemoisturizer,emphasizingskincarebenefitsandsustainablepackagingmaterials.”ThedesignerthenmodifiesthegenAIplatform’soutputbasedon
informationaboutcustomerpreferences,whichcouldcomefromfocusgroupsandcustomer
surveys.Next,anadvertisingdesignerusesmockupsofthenewpackagingindigital
advertisementstotestwhethertheimagesappealtoconsumers,basedononlineengagementwiththenewads.Thatdataisthenusedtofurtherrefinegen-AI-poweredconceptcreationand
prototyping.Withthisbasicapproach,onebeveragecompanyreduceditsconceptdevelopmenttimeby60percent.
Innovativeproductdevelopment
Creatingnewbeautyproductformulasisamultiyearprocess.Itrequiresbeautyplayersto
partnerwithlaboratoriestoresearchingredientsandexperimentwithformulastodeterminethesafety,stability,andefficacyofanewproduct.
GenAIcanspeedupthisprocess.AgenAImodel—onceithasbeentrainedonabeautyproduct’sbillofmaterials,rawmaterialusage,processparameters,internalresearchdata,andotherdata
(suchasproductpatentsorpreviousproducttrials)—canidentifytheingredientsthatmaybebestsuitedforanewproduct,predicttheproduct’sbenefits,andrecommendformularecipes.
2“Digitalscreensandkiosksaredrivingshopperengagement,”AVMagazine,December18,2023.
HowbeautyplayerscanscalegenAIin20255
Returningtotheexampleofanighttimemoisturizer,assumethataformulationscientistcouldpromptthegenAItooltocreateanewformulathatemphasizesneuropeptides,apopularskin
careingredient,andprioritizesanti-agingbenefitswhilealsoreducingformulationcosts.Oncethetoolcreatesapotentialrecipe,thescientistwouldrunlabteststoassessthecompatibilityandstabilityofingredientsintheformulation,aswellasadditionalsafetyandconsumertestingandclinicaltrials,ifapplicable.Formulaiterationwouldcontinuebasedonconsumerfeedback.
Whilethephysicaltestingprocesswillstilltaketime,McKinseyanalysishasfoundthatgenAItoolscanreducethetimeittakestoresearchnewproductsfromweekstodays.Thiscanhelpsaveupto5percentonrawmaterialswhendevelopingthoseproducts.
Buy,borrow,orbuild?
ThemarketforgenAIenterpriseplatformsisgrowing.Butwhichapproach—ifany—isbestsuitedforbeautyplayers?
OrganizationscanbringingenAItoolsinanyofthreeways—whatwecallthetaker,shaper,and
makerapproaches.Mostbeautyplayerslikelywon’ttakethemakerapproach,wherecompaniesbuildtheirownLLMmodelsfromscratch.Thatwouldrequirecapitalexpendituresandtalent
investmentsgreaterthanmostbeautycompaniescanjustify;itcouldalsounhelpfullydilutea
beautyplayer’sfocusonitscorecompetencies.However,beautyplayerscanstillgetvalueoutofthetwootherapproaches:
—Takerapproach.Thetakerapproachentailsintegratingoff-the-shelfthird-partygenAI
solutionsintoabusiness’sworkflows,withlittletonocustomization.Thisistheleastcostlyandresource-intensiveofthethreeapproaches,soitisanattractiveoptionforbeauty
brandsthatrelyonretailersfordistribution(andthereforehavelessconsumerdatawithwhichtocustomizemodels),havelesstechtalent,orhavelesscashforinvestments.
InevaluatingagenAItoolorplatform,beautyplayersshouldaskquestionssuchasthe
following:Whatarethedataprivacyandencryptionprotocolsinplaceatthevendor?Willthevendorusethebrands’datatotrainthird-partyorfirst-partyproprietarymodels?Whoownsthecopyrightstotheoutputs?Howeasyistheintegrationwiththebeautyplayer’sinternal
systems?(Forexample,doesthevendorhaveanApplicationProgrammingInterface?AretheyintegratedwithplayerslikeGoogleAnalyticstoenablebroaderusecases?)
Pilotingthetooliscrucial,ofcourse.MostreputablegenAIvendorsofferalow-costpilotforalimitedtime—usuallyaroundonemonth.
—Shaperapproach.Beingashapermeanstrainingthird-partygenAImodelsonthecompany’sowndataandinsightsrelatedtospecificgeographic,sector,organization,andbusinesscaseneeds.Forexample,forhyperpersonalizedtargeting,thedatamayincludeinformationaboutabrand’svoice,customerdemographicsandpreferences,orsuccessfulcampaigns.For
innovativeproductdevelopment,rawdatafromclinicaltestresultscouldhelptrainmodels.
Largerbeautybrandsorretailerswithawealthofconsumerdatamaychoosetheshaper
approach.TheywillneedabenchoftechtalentthatcanaddnewcomponentstothegenAItool,integrateitintoexistingworkflows,anddeployitacrosstheorganization.
HowbeautyplayerscanscalegenAIin20256
BeautyplayerscanuseamixofthetakerandshaperapproachestogenAI,dependingon
theirspecificneedsandusecases.Speed—ingettingtomarketandrespondingtoconsumerdemand—isparticularlyimportantforbeautyplayers.Forthisreason,beautyorganizations
shouldconsidermodulargenAIcomponents,whichmakeswitchingbetweenLLMproviderseasiertodo,soscalingiseasier.GenAImayenablestreamliningandautomationinbeauty,but
theindustryisasmuchscienceasitisart;itwillbecriticaltokeepahumaninthelooptocheckforrisksandinjectuniquelyhumancreativityinto,say,marketingandpackagingdesign.
HowtoimplementgenAIatscale
TooutcompeteindigitalandAI,
consumer-packaged-goodsplayersshouldconsidercritical
questions
suchas“Whereisthevalue?”and“Areleadersfromthebusinesssideactivelypartofthetransformation?”Inaddition,beautyplayerscantakefourstepstotrulyintegrategenAIintothebusiness:
—Alignleadershiponthevision,value,androadmap.Tomovefromexperimentingtoscaling,beautyplayersshouldidentifywhichofthefourusecasesdescribedearlierinthisarticle
willyieldthegreatestrevenuelift,timeandcostsavings,andcustomerexperienceimpact.Tocalculatethispotentialandthenshapetheroadmapaccordingly,executivesmustbring
togetherleadersfromacrossvariousfunctions,suchasmarketing,customerservice,andproductdevelopment.
—Bolstercapabilities.AspromisingasgenAIis,usingiteffectivelyoverthelongrunrequires
thatbeautyleadersassesshowitfitsintoandissupportedbythe
organization’scapabilities,
includingitsoperatingmodel,dataandtechnologypractices,andtalent
.Companiesshouldsetupcross-functionalteamstoevaluatetheorganization’sexistingcapabilitiesand
requirementsforadditionalcapabilities.Theseteamsshoulddeployupskillingprogramsthathelpaddresscapabilitygapswithintheirranks.
—Test,learn,refine,repeat.BeautyplayersshouldtestgenAI’soutputincontrolledsettings
todeterminewha
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 敬老院五保供養(yǎng)協(xié)議書(shū)
- 上海退休人員返聘協(xié)議
- 網(wǎng)上刊登廣告合作協(xié)議
- 2025年新世紀(jì)版選擇性必修3生物下冊(cè)月考試卷含答案
- 2025年人教A版高二化學(xué)下冊(cè)月考試卷含答案
- 2025年外研版2024八年級(jí)物理上冊(cè)階段測(cè)試試卷含答案
- 2025年滬教新版高三地理上冊(cè)月考試卷含答案
- 2025年北師大新版七年級(jí)地理上冊(cè)月考試卷含答案
- 2025至2030年中國(guó)迷你橫走式機(jī)械手?jǐn)?shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025年滬教版七年級(jí)地理上冊(cè)階段測(cè)試試卷含答案
- 2024-2030年中國(guó)通航飛行服務(wù)站(FSS)行業(yè)發(fā)展模式規(guī)劃分析報(bào)告
- 機(jī)械制造企業(yè)風(fēng)險(xiǎn)分級(jí)管控手冊(cè)
- 地系梁工程施工方案
- 藏文基礎(chǔ)-教你輕輕松松學(xué)藏語(yǔ)(西藏大學(xué))知到智慧樹(shù)章節(jié)答案
- 2024電子商務(wù)平臺(tái)用戶隱私保護(hù)協(xié)議3篇
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 英語(yǔ) 含答案
- 電力工程施工安全風(fēng)險(xiǎn)評(píng)估與防控
- 醫(yī)學(xué)教程 常見(jiàn)體表腫瘤與腫塊課件
- 內(nèi)分泌系統(tǒng)異常與虛勞病關(guān)系
- 智聯(lián)招聘在線測(cè)評(píng)題
- DB3418T 008-2019 宣紙潤(rùn)墨性感官評(píng)判方法
評(píng)論
0/150
提交評(píng)論