安徽省蚌埠市2024屆高三下學期數(shù)學試題練習卷_第1頁
安徽省蚌埠市2024屆高三下學期數(shù)學試題練習卷_第2頁
安徽省蚌埠市2024屆高三下學期數(shù)學試題練習卷_第3頁
安徽省蚌埠市2024屆高三下學期數(shù)學試題練習卷_第4頁
安徽省蚌埠市2024屆高三下學期數(shù)學試題練習卷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省蚌埠市2023屆高三下學期數(shù)學試題練習卷(4)注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若非零實數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.2.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題3.年某省將實行“”的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B. C. D.4.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.5.等比數(shù)列若則()A.±6 B.6 C.-6 D.6.為比較甲、乙兩名高二學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為5分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差7.已知雙曲線的一條漸近線經過圓的圓心,則雙曲線的離心率為()A. B. C. D.28.已知復數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.9.已知集合,則()A. B. C. D.10.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題;“三百七十八里關,初行健步不為難,次后腳痛遞減半,六朝才得到其關,要見每朝行里數(shù),請公仔細算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里11.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.12.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中含的系數(shù)為__________.(用數(shù)字填寫答案)14.設數(shù)列的前n項和為,且,若,則______________.15.已知平面向量,,且,則向量與的夾角的大小為________.16.已知正數(shù)a,b滿足a+b=1,則的最小值等于__________,此時a=____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)當時,討論函數(shù)的單調區(qū)間;(Ⅱ)若對任意的和恒成立,求實數(shù)的取值范圍.18.(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點.(1)求證:平面;(2)求二面角的正弦值.19.(12分)已知橢圓()經過點,離心率為,、、為橢圓上不同的三點,且滿足,為坐標原點.(1)若直線、的斜率都存在,求證:為定值;(2)求的取值范圍.20.(12分)設等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列和構造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設,,請計算,,;(2)設,,試求,的表達式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設,,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.21.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標原點,求的取值范圍.22.(10分)已知函數(shù).(1)若函數(shù)在上單調遞增,求實數(shù)的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

令,則,,將指數(shù)式化成對數(shù)式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點睛】本題考查了利用作差法比較大小,同時也考查了指數(shù)式與對數(shù)式的轉化,考查推理能力,屬于中等題.2.D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.3.B【解析】

甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.4.B【解析】

先分別判斷命題真假,再由復合命題的真假性,即可得出結論.【詳解】為真命題;命題是假命題,比如當,或時,則不成立.則,,均為假.故選:B【點睛】本題考查復合命題的真假性,判斷簡單命題的真假是解題的關鍵,屬于基礎題.5.B【解析】

根據(jù)等比中項性質代入可得解,由等比數(shù)列項的性質確定值即可.【詳解】由等比數(shù)列中等比中項性質可知,,所以,而由等比數(shù)列性質可知奇數(shù)項符號相同,所以,故選:B.【點睛】本題考查了等比數(shù)列中等比中項的簡單應用,注意項的符號特征,屬于基礎題.6.C【解析】

根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項.【詳解】根據(jù)雷達圖得到如下數(shù)據(jù):數(shù)學抽象邏輯推理數(shù)學建模直觀想象數(shù)學運算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【點睛】本題考查統(tǒng)計問題,考查數(shù)據(jù)處理能力和應用意識.7.B【解析】

求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關系求雙曲線的離心率,是基礎題.8.D【解析】

把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎題.9.B【解析】

計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.10.C【解析】

設第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數(shù)列的某一項的求法,考查等比數(shù)列等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,是基礎題.11.B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12.D【解析】

根據(jù)底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關系,設球心為,即可由球的性質和勾股定理求得球的半徑,進而得球的表面積.【詳解】設為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質可知所以三棱錐為正三棱錐,設底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設為,如下圖所示:由球的性質可知,平面,且在同一直線上,設球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結構特征和相關計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】由題意得,二項式展開式的通項為,令,則,所以得系數(shù)為.14.9【解析】

用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點睛】本題考查已知與的關系求數(shù)列通項的問題,要注意n的范圍,考查學生運算求解能力,是一道中檔題.15.【解析】

由,解得,進而求出,即可得出結果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點睛】本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎知識;考查運算求解能力,屬于基礎題.16.3【解析】

根據(jù)題意,分析可得,由基本不等式的性質可得最小值,進而分析基本不等式成立的條件可得a的值,即可得答案.【詳解】根據(jù)題意,正數(shù)a、b滿足,則,當且僅當時,等號成立,故的最小值為3,此時.故答案為:3;.【點睛】本題考查基本不等式及其應用,考查轉化與化歸能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)首先求得導函數(shù),然后結合導函數(shù)的解析式分類討論函數(shù)的單調性即可;(Ⅱ)將原問題進行等價轉化為,,恒成立,然后構造新函數(shù),結合函數(shù)的性質確定實數(shù)的取值范圍即可.【詳解】解:(Ⅰ)當時,,當時,在上恒成立,函數(shù)在上單調遞減;當時,由得:;由得:.∴當時,函數(shù)的單調遞減區(qū)間是,無單調遞增區(qū)間:當時,函數(shù)的單調遞減區(qū)間是,函數(shù)的單調遞增區(qū)間是.(Ⅱ)對任意的和,恒成立等價于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區(qū)間上單調遞減,在區(qū)間上單調遞增,∴當時,,即又∵,∴實數(shù)的取值范圍是:.【點睛】本題主要考查導函數(shù)研究函數(shù)的單調性和恒成立問題,考查分類討論的數(shù)學思想,等價轉化的數(shù)學思想等知識,屬于中等題.18.(1)見解析;(2).【解析】

(1)取的中點,連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結論;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得二面角的余弦值,進而可求得其正弦值.【詳解】(1)取中點,連接、、,且,四邊形為平行四邊形,且,、分別為、中點,且,則四邊形為平行四邊形,且,且,且,所以,四邊形為平行四邊形,且,四邊形為平行四邊形,,平面,平面,平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、,,,,設平面的法向量為,由,得,取,則,,,設平面的法向量為,由,得,取,則,,,,,因此,二面角的正弦值為.【點睛】本題考查線面平行的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.19.(1)證明見解析;(2).【解析】

(1)首先根據(jù)題中條件求出橢圓方程,設、、點坐標,根據(jù)利用坐標表示出即可得證;(2)設直線方程,再與橢圓方程聯(lián)立利用韋達定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設,,,由為的重心,;又因為,,,,(2)當?shù)男甭什淮嬖跁r:,,,代入橢圓得,,,當?shù)男甭蚀嬖跁r:設直線為,這里,由,,根據(jù)韋達定理有,,,故,代入橢圓方程有,又因為,綜上,的范圍是.【點睛】本題主要考查了橢圓方程的求解,三角形重心的坐標關系,直線與橢圓所交弦長,屬于一般題.20.(1)(2)詳見解析(3)29【解析】

(1)將,代入,可求出,,可代入求,,可求結果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數(shù),考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數(shù).反證法:假設集合中任何一個元素,都不是7的倍數(shù),則集合中每一元素關于7的余數(shù)可以為1,2,3,4,5,6,又因為集合中共有7個元素,所以集合中至少存在兩個元素關于7的余數(shù)相同,不妨設為,,其中,,.則這兩個元素的差為7的倍數(shù),即,所以,與矛盾,所以假設不成立,即原命題成立.即集合中至少有一元素是7的倍數(shù),不妨設該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負整數(shù),設,則,且,,,,所以,當,時,對于整數(shù),若,則成立.(3)下面用反證法證明:若對于整數(shù),,則,假設命題不成立,即,且.則對于整數(shù),存在,,,,,使成立,整理,得,又因為,,所以且是7的倍數(shù),因為,,所以,所以矛盾,即假設不成立.所以對于整數(shù),若,則,又由第二問,對于整數(shù),則,所以的最大值,就是集合中元素的最大值,又因為,,,,所以.【點睛】本題考查數(shù)列的綜合應用,以及反證法,求最值,屬于難題.21.(1);(2).【解析】

(1)根據(jù)焦點坐標和離心率,結合橢圓中的關系,即可求得的值,進而得橢圓的標準方程.(2)設出直線的方程為,由題意可知為中點.聯(lián)立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向量的線性運算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點坐標公式可得點的坐標,代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結合函數(shù)單調性即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論