2025年外研版2024高二數(shù)學(xué)上冊(cè)月考試卷_第1頁(yè)
2025年外研版2024高二數(shù)學(xué)上冊(cè)月考試卷_第2頁(yè)
2025年外研版2024高二數(shù)學(xué)上冊(cè)月考試卷_第3頁(yè)
2025年外研版2024高二數(shù)學(xué)上冊(cè)月考試卷_第4頁(yè)
2025年外研版2024高二數(shù)學(xué)上冊(cè)月考試卷_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年外研版2024高二數(shù)學(xué)上冊(cè)月考試卷646考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五總分得分評(píng)卷人得分一、選擇題(共7題,共14分)1、若a+b=2,則3a+3b的最小值()

A.4

B.5

C.6

D.7

2、復(fù)數(shù)則的充要條件是A.B.且C.D.3、四棱錐的8條棱代表8種不同的化工產(chǎn)品,有公共點(diǎn)的兩條棱代表的化工產(chǎn)品放在同一倉(cāng)庫(kù)是危險(xiǎn)的,沒(méi)有公共頂點(diǎn)的兩條棱所代表的化工產(chǎn)品放在同一倉(cāng)庫(kù)是安全的,現(xiàn)打算用編號(hào)為①、②、③、④的4個(gè)倉(cāng)庫(kù)存放這8種化工產(chǎn)品,那么安全存放的不同方法種數(shù)為()A.96B.48C.24D.124、【題文】已知tanθ=2,則sin2θ+sinθcosθ-2cos2θ=()A.-B.C.-D.5、若=a+bi(a,b∈R),i是虛數(shù)單位,則乘積ab的值是()A.﹣15B.3C.﹣3D.56、點(diǎn)到直線的距離為()A.2B.1C.D.7、在首項(xiàng)為81,公差為-7的等差數(shù)列{an}中,最接近零的是第()項(xiàng).A.11B.12C.13D.14評(píng)卷人得分二、填空題(共5題,共10分)8、對(duì)?n∈N+,直線總與雙曲線左、右兩支各有一個(gè)交點(diǎn),則該雙曲線的離心率e范圍為____.9、【題文】已知為銳角,且cos=cos=則的值是__________10、【題文】若每名學(xué)生測(cè)試達(dá)標(biāo)的概率都是(相互獨(dú)立),測(cè)試后k個(gè)人達(dá)標(biāo),經(jīng)計(jì)算5人中恰有k人同時(shí)達(dá)標(biāo)的概率是則k的值為____.11、【題文】已知向量且則實(shí)數(shù)=____.12、采用系統(tǒng)抽樣方法從960人中抽取32人做問(wèn)卷調(diào)查.為此將他們隨機(jī)編號(hào)為1,2,3,,960,分組后在第一組采用簡(jiǎn)單隨機(jī)抽樣的方法抽到的號(hào)碼為9,抽到得32人中,編號(hào)落入?yún)^(qū)間[1,460]的人做問(wèn)卷A,編號(hào)落入?yún)^(qū)間[461,761]的人做問(wèn)卷B,其余的人做問(wèn)卷C,則抽到的人中,做問(wèn)卷B的人數(shù)為:______.評(píng)卷人得分三、作圖題(共9題,共18分)13、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?

14、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。ㄈ鐖D所示)15、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最小.(如圖所示)16、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?

17、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。ㄈ鐖D所示)18、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最小.(如圖所示)19、分別畫一個(gè)三棱錐和一個(gè)四棱臺(tái).評(píng)卷人得分四、計(jì)算題(共4題,共20分)20、如圖,正三角形ABC的邊長(zhǎng)為2,M是BC邊上的中點(diǎn),P是AC邊上的一個(gè)動(dòng)點(diǎn),求PB+PM的最小值.21、1.本小題滿分12分)對(duì)于任意的實(shí)數(shù)不等式恒成立,記實(shí)數(shù)的最大值是(1)求的值;(2)解不等式22、已知a為實(shí)數(shù),求導(dǎo)數(shù)23、已知z1=5+10i,z2=3﹣4i,求z.評(píng)卷人得分五、綜合題(共4題,共16分)24、(2009?新洲區(qū)校級(jí)模擬)如圖,已知直角坐標(biāo)系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點(diǎn)A和點(diǎn)B,且OA=OB=1.這條曲線是函數(shù)y=的圖象在第一象限的一個(gè)分支,點(diǎn)P是這條曲線上任意一點(diǎn),它的坐標(biāo)是(a、b),由點(diǎn)P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點(diǎn)E、F.則AF?BE=____.25、(2015·安徽)設(shè)橢圓E的方程為+=1(ab0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足=2直線OM的斜率為26、已知Sn為等差數(shù)列{an}的前n項(xiàng)和,S6=51,a5=13.27、已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,S3=0.參考答案一、選擇題(共7題,共14分)1、C【分析】

∵a+b=2;

則由基本不等式可得,3a+3b≥==6

當(dāng)且僅當(dāng)3a=3b即a=b=1時(shí)取等號(hào)。

∴3a+3b的最小值為6

故選C

【解析】【答案】結(jié)合已知,直接利用基本不等式,3a+3b≥=可求最小值。

2、C【分析】為實(shí)數(shù),則ab=0.應(yīng)選C?!窘馕觥俊敬鸢浮緾3、B【分析】【解析】

8種化工產(chǎn)品分4組,設(shè)四棱錐的頂點(diǎn)是P,底面四邊形的個(gè)頂點(diǎn)為A、B、C、D.分析得到四棱錐沒(méi)有公共點(diǎn)的8條棱分4組,只有2種情況,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法種數(shù)為2=48.故選B.【解析】【答案】B4、D【分析】【解析】

故選D【解析】【答案】D5、C【分析】【解答】解:∵=a+bi(a,b∈R),i是虛數(shù)單位,∴=a+bi;

∴=a+bi,∴﹣1+3i=a+bi;

∴a=﹣1,b=3,∴ab=﹣3;

故選C.

【分析】利用兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),把等式的左邊化簡(jiǎn)到最簡(jiǎn)形式,再根據(jù)兩個(gè)復(fù)數(shù)相等的充要條件,求出a、b的值.6、A【分析】【解答】點(diǎn)到直線的距離為故選A。

【分析】應(yīng)用點(diǎn)到直線的距離公式加以計(jì)算。本題屬于基礎(chǔ)題。7、C【分析】解:∵a1=81;d=-7;

∴an=81+(n-1)×(-7)=88-7n;

由an=88-7n≥0;

解得n

∴最接近零的是第13項(xiàng);

故選C.

由a1=81,d=-7,得到an=81+(n-1)×(-7)=88-7n,由an=88-7n≥0;能求出最接近零的項(xiàng).

本題考查等差數(shù)列的通項(xiàng)公式,解題時(shí)要認(rèn)真審題,仔細(xì)解答,是基礎(chǔ)題.【解析】【答案】C二、填空題(共5題,共10分)8、略

【分析】

已知雙曲線的一條漸近線方程為y=x;

當(dāng)n取最小值1時(shí),直線的斜率為1

為了保證對(duì)?n∈N+,直線總與雙曲線左;右兩支各有一個(gè)交點(diǎn);

只須:漸近線y=x的斜率大于當(dāng)n取最小值1時(shí),直線的斜率即可;

∴>1,離心率e2=

∴e>

故答案為:.

【解析】【答案】為了保證對(duì)?n∈N+,直線總與雙曲線左、右兩支各有一個(gè)交點(diǎn),只須:漸近線y=x的斜率大于當(dāng)n取最小值1時(shí),直線的斜率即可;根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍.

9、略

【分析】【解析】為銳角,且cos=cos=所以

【解析】【答案】10、略

【分析】【解析】略【解析】【答案】____11、略

【分析】【解析】略【解析】【答案】12、略

【分析】解:960÷32=30,故由題意可得抽到的號(hào)碼構(gòu)成以9為首項(xiàng)、以30為公差的等差數(shù)列,且此等差數(shù)列的通項(xiàng)公式為an=9+(n-1)30=30n-21.

由461≤30n-21≤761;解得17≤n≤26,且n∈Z,故做問(wèn)卷B的人數(shù)為10;

故答案為10.

由題意可得抽到的號(hào)碼構(gòu)成以9為首項(xiàng)、以30為公差的等差數(shù)列,求得此等差數(shù)列的通項(xiàng)公式為an=9+(n-1)30=30n-21;由451≤30n-21≤750求得正整數(shù)n的個(gè)數(shù).

本題主要考查等差數(shù)列的通項(xiàng)公式,系統(tǒng)抽樣的定義和方法,屬于基礎(chǔ)題.【解析】10三、作圖題(共9題,共18分)13、略

【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;

如圖所示;

由對(duì)稱的性質(zhì)可知AB′=AC+BC;

根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.

14、略

【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.

證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.15、略

【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;

這樣PA+PB最小;

理由是兩點(diǎn)之間,線段最短.16、略

【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;

如圖所示;

由對(duì)稱的性質(zhì)可知AB′=AC+BC;

根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.

17、略

【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.

證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.18、略

【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;

這樣PA+PB最?。?/p>

理由是兩點(diǎn)之間,線段最短.19、解:畫三棱錐可分三步完成。

第一步:畫底面﹣﹣畫一個(gè)三角形;

第二步:確定頂點(diǎn)﹣﹣在底面外任一點(diǎn);

第三步:畫側(cè)棱﹣﹣連接頂點(diǎn)與底面三角形各頂點(diǎn).

畫四棱可分三步完成。

第一步:畫一個(gè)四棱錐;

第二步:在四棱錐一條側(cè)棱上取一點(diǎn);從這點(diǎn)開始,順次在各個(gè)面內(nèi)畫與底面對(duì)應(yīng)線段平行的線段;

第三步:將多余線段擦去.

【分析】【分析】畫三棱錐和畫四棱臺(tái)都是需要先畫底面,再確定平面外一點(diǎn)連接這點(diǎn)與底面上的頂點(diǎn),得到錐體,在畫四棱臺(tái)時(shí),在四棱錐一條側(cè)棱上取一點(diǎn),從這點(diǎn)開始,順次在各個(gè)面內(nèi)畫與底面對(duì)應(yīng)線段平行的線段,將多余線段擦去,得到圖形.四、計(jì)算題(共4題,共20分)20、略

【分析】【分析】作點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)E,連接EP、EB、EM、EC,則PB+PM=PE+PM,因此EM的長(zhǎng)就是PB+PM的最小值.【解析】【解答】解:如圖;作點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)E,連接EP;EB、EM、EC;

則PB+PM=PE+PM;

因此EM的長(zhǎng)就是PB+PM的最小值.

從點(diǎn)M作MF⊥BE;垂足為F;

因?yàn)锽C=2;

所以BM=1,BE=2=2.

因?yàn)椤螹BF=30°;

所以MF=BM=,BF==,ME==.

所以PB+PM的最小值是.21、略

【分析】【解析】

(1)由絕對(duì)值不等式,有那么對(duì)于只需即則4分(2)當(dāng)時(shí):即則當(dāng)時(shí):即則當(dāng)時(shí):即則10分那么不等式的解集為12分【解析】【答案】(1)(2)22、解:【分析】【分析】由原式得∴23、解:∴

又∵z1=5+10i,z2=3﹣4i

∴【分析】【分析】把z1、z2代入關(guān)系式,化簡(jiǎn)即可五、綜合題(共4題,共16分)24、略

【分析】【分析】根據(jù)OA=OB,得到△AOB是等腰直角三角形,則△NBF也是等腰直角三角形,由于P的縱坐標(biāo)是b,因而F點(diǎn)的縱坐標(biāo)是b,即FM=b,則得到AF=b,同理BE=a,根據(jù)(a,b)是函數(shù)y=的圖象上的點(diǎn),因而b=,ab=,則即可求出AF?BE.【解析】【解答】解:∵P的坐標(biāo)為(a,);且PN⊥OB,PM⊥OA;

∴N的坐標(biāo)為(0,);M點(diǎn)的坐標(biāo)為(a,0);

∴BN=1-;

在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);

∴NF=BN=1-;

∴F點(diǎn)的坐標(biāo)為(1-,);

∵OM=a;

∴AM=1-a;

∴EM=AM=1-a;

∴E點(diǎn)的坐標(biāo)為(a;1-a);

∴AF2=(-)2+()2=,BE2=(a)2+(-a)2=2a2;

∴AF?BE=1.

故答案為:1.25、(1){#mathml#}255

{#/mathml#};(2){#mathml#}x245+y29=1

{#/mathml#}【分析】【解答】1、由題設(shè)條件知,點(diǎn)M的坐標(biāo)為(),又Kom=從而=進(jìn)而得a=c==2b,故e==

2、由題設(shè)條件和(1)的計(jì)算結(jié)果可得,直線AB的方程為+=1,點(diǎn)N的坐標(biāo)為(-),設(shè)點(diǎn)N關(guān)于直線AB的對(duì)稱點(diǎn)S的坐標(biāo)為(x1,),則線段NS的中點(diǎn)T的坐標(biāo)為()又點(diǎn)T在直線AB上,且KNSKAB=-1從而可解得b=3,所以a=故圓E的方程為

【分析】橢圓一直是解答題中考查解析幾何知識(shí)的重要載體,不管對(duì)其如何進(jìn)行改編與設(shè)計(jì),抓住基礎(chǔ)知識(shí),考基本技能是不變的話題,解析幾何主要研究?jī)深悊?wèn)題:一是根據(jù)已知條件確定曲線方程,二是利用曲線方程研究曲線的幾何性質(zhì),曲線方

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論