版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
北京第五中學(xué)2022-2023學(xué)年新高三開學(xué)摸底考(全國II卷)數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣22.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或53.已知為虛數(shù)單位,實數(shù)滿足,則()A.1 B. C. D.4.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.5.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.6.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數(shù)為().A.432 B.576 C.696 D.9607.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無數(shù)條直線與l相交8.已知是虛數(shù)單位,若,則()A. B.2 C. D.39.若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是()A. B. C. D.10.在中,,,,則邊上的高為()A. B.2 C. D.11.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.12.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列{an}的前n項和為Sn,若a2a14.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.15.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎.在比賽結(jié)果揭曉之前,四人的猜測如下表,其中“√”表示猜測某人獲獎,“×”表示猜測某人未獲獎,而“○”則表示對某人是否獲獎未發(fā)表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎?wù)呤莀______.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測√××√乙的猜測×○○√丙的猜測×√×√丁的猜測○○√×16.設(shè)函數(shù),若在上的最大值為,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.18.(12分)已知拋物線的焦點為,點在拋物線上,,直線過點,且與拋物線交于,兩點.(1)求拋物線的方程及點的坐標(biāo);(2)求的最大值.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若恒成立,求實數(shù)的取值范圍.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)直線與曲線相交于兩點,的頂點也在曲線上運動,求面積的最大值.21.(12分)已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點,且與圓相切.(1)求的值;(2)動點在拋物線的準(zhǔn)線上,動點在上,若在點處的切線交軸于點,設(shè).求證點在定直線上,并求該定直線的方程.22.(10分)已知數(shù)列的前項和為,且滿足,各項均為正數(shù)的等比數(shù)列滿足(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復(fù)數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎(chǔ)題.2.B【解析】
根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.3.D【解析】,則故選D.4.A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.5.B【解析】
,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時,的展開式中的系數(shù)為.當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵.6.B【解析】
先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊方法數(shù)為種.故選:B.【點睛】本題考查排列組合的綜合應(yīng)用,在分類時,要注意不重不漏的原則,本題是一道中檔題.7.D【解析】
通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯誤,故選D.【點睛】本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.8.A【解析】
直接將兩邊同時乘以求出復(fù)數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復(fù)數(shù)的運算及其模的求法,是基礎(chǔ)題.9.C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題.10.C【解析】
結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.11.A【解析】
根據(jù)復(fù)數(shù)的乘法運算法則化簡可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【點睛】本題考查復(fù)數(shù)的運算和復(fù)數(shù)的分類,屬基礎(chǔ)題.12.D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.二、填空題:本題共4小題,每小題5分,共20分。13.-2【解析】試題分析:∵a2考點:等比數(shù)列性質(zhì)及求和公式14.【解析】
確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質(zhì)可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學(xué)生的空間想象能力和計算能力.15.乙、丁【解析】
本題首先可根據(jù)題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進行分析,觀察四人所猜測的結(jié)果是否沖突,最后即可得出結(jié)果.【詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.【點睛】本題是一個簡單的合情推理題,能否根據(jù)“四個人中有且只有兩個人的猜測是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡單題.16.【解析】
求出函數(shù)的導(dǎo)數(shù),由在上,可得在上單調(diào)遞增,則函數(shù)最大值為,即可求出參數(shù)的值.【詳解】解:定義域為,在上單調(diào)遞增,故在上的最大值為故答案為:【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.t=1【解析】
把變形為結(jié)合基本不等式進行求解.【詳解】因為即,當(dāng)且僅當(dāng),,時,上述等號成立,所以,即,又x,y,z>0,所以xyzt=1.【點睛】本題主要考查基本不等式的應(yīng)用,利用基本不等式求解最值時要注意轉(zhuǎn)化為適用形式,同時要關(guān)注不等號是否成立,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).18.(1),;(2)1.【解析】
(1)根據(jù)拋物線上的點到焦點和準(zhǔn)線的距離相等,可得p值,即可求拋物線C的方程從而可得解;(2)設(shè)直線l的方程為:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,設(shè)A(x1,y1),B(x2,y2),則y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【詳解】(1)∵點F是拋物線y2=2px(p>0)的焦點,P(2,y0)是拋物線上一點,|PF|=3,∴23,解得:p=2,∴拋物線C的方程為y2=4x,∵點P(2,n)(n>0)在拋物線C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴設(shè)直線l的方程為:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0設(shè)A(x1,y1),B(x2,y2),則y1,y2是y2+4my﹣4=0的兩個不同實根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴當(dāng)m時,取最大值1.【點睛】本題考查拋物線方程的求法,考查向量的數(shù)量積的最大值的求法,考查拋物線、直線方程、韋達定理等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是中檔題.19.(1)當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;(2).【解析】
(1)對a分三種情況討論求出函數(shù)的單調(diào)性;(2)對a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當(dāng)時,,在上單調(diào)遞增;當(dāng)時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增.綜上:當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知:當(dāng)時,,∴成立.當(dāng)時,,,∴.當(dāng)時,,,∴,即.綜上.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.20.(1):,:;(2)【解析】
(1)由直線參數(shù)方程消去參數(shù)即可得直線的普通方程,根據(jù)極坐標(biāo)方程和直角坐標(biāo)方程互化的公式即可得曲線的直角坐標(biāo)方程;(2)由即可得的底,由點到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數(shù)得直線的普通方程為,由得,曲線的直角坐標(biāo)方程為;(2)曲線即,圓心到直線的距離,所以,又點到直線的距離的最大值為,所以面積的最大值為.【點睛】本題考查了參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程的互化,考查了直線與圓的位置關(guān)系,屬于中檔題.21.(1);(2)點在定直線上.【解析】
(1)設(shè)出直線的方程為,由直線和圓相切的條件:,解得;(2)設(shè)出,運用導(dǎo)數(shù)求得切線的斜率,求得為切點的切線方程,再由向量的坐標(biāo)表示,可得在定直線上;【詳解】解:(1)依題意設(shè)直線的方程為,由已知得:圓的圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,即,解得或(舍去).所以;(2)依題意設(shè),由(1)知拋物線方程為,所以,所以,設(shè),則以為切點的切線的斜率為,所以切線的方程為.令,,即交軸于點坐標(biāo)為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇教版小學(xué)三年級數(shù)學(xué)上冊全冊教案
- 光影交錯室內(nèi)氛圍營造
- 有用一年級下冊數(shù)學(xué)教案表格
- 高一化學(xué)教案:第三單元從微觀結(jié)構(gòu)看物質(zhì)的多樣性
- 2024高中地理第1章區(qū)域地理環(huán)境與人類活動第3節(jié)第1課時四大地區(qū)學(xué)案湘教版必修3
- 2024高中物理第一章靜電場綜合評估含解析新人教版選修3-1
- 2024高中語文第2單元孟子蚜第3課民為貴練習(xí)含解析新人教版選修先秦諸子蚜
- 2024高中語文第六單元文無定格貴在鮮活子路曾皙冉有公西華侍坐訓(xùn)練含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考歷史一輪復(fù)習(xí)第12講古代中國的農(nóng)業(yè)和手工業(yè)學(xué)案含解析人民版
- 2024高考地理一輪復(fù)習(xí)第三部分區(qū)域可持續(xù)發(fā)展-重在綜合第四章區(qū)域經(jīng)濟發(fā)展第32講區(qū)域農(nóng)業(yè)發(fā)展學(xué)案新人教版
- 四年級少先隊活動課教案(完整版)
- 廣東省深圳市名校2023-2024學(xué)年高一上學(xué)期期中聯(lián)考物理試題
- 發(fā)那科注塑機講義課件
- 2023年廣西北海市創(chuàng)城辦招聘20人(共500題)筆試必備質(zhì)量檢測、歷年高頻考點模擬試題含答案解析
- 2023高考英語新高考1卷完形填空全考點解析附譯文全
- 工作票知識培訓(xùn)課件
- GB/T 42616-2023電梯物聯(lián)網(wǎng)監(jiān)測終端技術(shù)規(guī)范
- 河南省醫(yī)院信息大全
- 酒店賠償價目表
- 廣西貴港市2023年中考物理試題(原卷版)
- 集團總裁崗位說明書
評論
0/150
提交評論