北京市北師大二附中2024屆高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷_第1頁
北京市北師大二附中2024屆高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷_第2頁
北京市北師大二附中2024屆高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷_第3頁
北京市北師大二附中2024屆高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷_第4頁
北京市北師大二附中2024屆高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北京市北師大二附中2023屆高三第三次聯(lián)考(四川版)數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽爻,“”表示一個(gè)陰爻).若從含有兩個(gè)及以上陽爻的卦中任取兩卦,這兩卦的六個(gè)爻中都恰有兩個(gè)陽爻的概率為()A. B. C. D.2.已知隨機(jī)變量滿足,,.若,則()A., B.,C., D.,3.胡夫金字塔是底面為正方形的錐體,四個(gè)側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對(duì)胡夫金字塔進(jìn)行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長度約為A. B.C. D.4.已知隨機(jī)變量服從正態(tài)分布,且,則()A. B. C. D.5.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.6.已知,若方程有唯一解,則實(shí)數(shù)的取值范圍是()A. B.C. D.7.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有的點(diǎn)()A.向左平移個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變B.向左平移個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變C.向左平移個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變D.向左平移個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變8.已知為定義在上的奇函數(shù),且滿足當(dāng)時(shí),,則()A. B. C. D.9.如圖是甲、乙兩位同學(xué)在六次數(shù)學(xué)小測(cè)試(滿分100分)中得分情況的莖葉圖,則下列說法錯(cuò)誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等10.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.11.若的展開式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.112.已知為一條直線,為兩個(gè)不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.等邊的邊長為2,則在方向上的投影為________.14.在中,角的對(duì)邊分別為,且.若為鈍角,,則的面積為____________.15.復(fù)數(shù)為虛數(shù)單位)的虛部為__________.16.不等式的解集為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),直線是曲線在處的切線.(1)求證:無論實(shí)數(shù)取何值,直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)若直線經(jīng)過點(diǎn),試判斷函數(shù)的零點(diǎn)個(gè)數(shù)并證明.18.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點(diǎn)為棱的中點(diǎn).(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說明理由;(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.19.(12分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對(duì)于任意,有且僅有一個(gè)零點(diǎn).20.(12分)已知函數(shù),其中,.(1)當(dāng)時(shí),求的值;(2)當(dāng)?shù)淖钚≌芷跒闀r(shí),求在上的值域.21.(12分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。22.(10分)已知數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)若,,且數(shù)列前項(xiàng)和為,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

基本事件總數(shù)為個(gè),都恰有兩個(gè)陽爻包含的基本事件個(gè)數(shù)為個(gè),由此求出概率.【詳解】解:由圖可知,含有兩個(gè)及以上陽爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個(gè),其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個(gè),所以,所求的概率.故選:B.【點(diǎn)睛】本題滲透?jìng)鹘y(tǒng)文化,考查概率、計(jì)數(shù)原理等基本知識(shí),考查抽象概括能力和應(yīng)用意識(shí),屬于基礎(chǔ)題.2.B【解析】

根據(jù)二項(xiàng)分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)殡S機(jī)變量滿足,,.所以服從二項(xiàng)分布,由二項(xiàng)分布的性質(zhì)可得:,因?yàn)?,所以,由二次函?shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點(diǎn)睛】本題主要考查二項(xiàng)分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.3.D【解析】

設(shè)胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側(cè)棱長為,所以需要燈帶的總長度約為,故選D.4.C【解析】

根據(jù)在關(guān)于對(duì)稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機(jī)變量服從正態(tài)分布,則.5.B【解析】

由可得,所以,故選B.6.B【解析】

求出的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實(shí)根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當(dāng)即圖象相切時(shí),根據(jù),,解得舍去),則的范圍是,故選:.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)問題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.7.A【解析】

由函數(shù)的最大值求出,根據(jù)周期求出,由五點(diǎn)畫法中的點(diǎn)坐標(biāo)求出,進(jìn)而求出的解析式,與對(duì)比結(jié)合坐標(biāo)變換關(guān)系,即可求出結(jié)論.【詳解】由圖可知,,又,,又,,,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有向左平移個(gè)長度單位,得到的圖象,再將的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變)即可.故選:A【點(diǎn)睛】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關(guān)系,屬于中檔題.8.C【解析】

由題設(shè)條件,可得函數(shù)的周期是,再結(jié)合函數(shù)是奇函數(shù)的性質(zhì)將轉(zhuǎn)化為函數(shù)值,即可得到結(jié)論.【詳解】由題意,,則函數(shù)的周期是,所以,,又函數(shù)為上的奇函數(shù),且當(dāng)時(shí),,所以,.故選:C.【點(diǎn)睛】本題考查函數(shù)的周期性,由題設(shè)得函數(shù)的周期是解答本題的關(guān)鍵,屬于基礎(chǔ)題.9.B【解析】

由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對(duì)于甲,;對(duì)于乙,,故正確;甲的極差為,乙的極差為,故錯(cuò)誤;對(duì)于甲,方差.5,對(duì)于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計(jì)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.10.B【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進(jìn)行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當(dāng)m,n時(shí),檢驗(yàn)可得,A、C、D都不正確,故選:B.【點(diǎn)睛】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項(xiàng).11.B【解析】

由,進(jìn)而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.12.D【解析】A.若,則或,故A錯(cuò)誤;B.若,則或故B錯(cuò)誤;C.若,則或,或與相交;D.若,則,正確.故選D.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

建立直角坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算求解在方向上的投影即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,由題意可知:,,,則:,,且,,據(jù)此可知在方向上的投影為.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,向量投影的定義與計(jì)算等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.14.【解析】

轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因?yàn)?,所以.又因?yàn)?,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.15.1【解析】試題分析:,即虛部為1,故填:1.考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算16.【解析】

通過平方,將無理不等式化為有理不等式求解即可。【詳解】由得,解得,所以解集是?!军c(diǎn)睛】本題主要考查無理不等式的解法。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析,(2)函數(shù)存在唯一零點(diǎn).【解析】

(1)首先求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義求出處的切線斜率,利用點(diǎn)斜式即可求出切線方程,根據(jù)方程即可求出定點(diǎn).(2)由(1)求出函數(shù),令方程可轉(zhuǎn)化為記,利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞增,根據(jù),由零點(diǎn)存在性定理即可求出零點(diǎn)個(gè)數(shù).【詳解】所以直線方程為即,恒過點(diǎn)將代入直線方程,得考慮方程即,等價(jià)于記,則于是函數(shù)在上單調(diào)遞增,又所以函數(shù)在區(qū)間上存在唯一零點(diǎn),即函數(shù)存在唯一零點(diǎn).【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、直線過定點(diǎn)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、零點(diǎn)存在性定理,屬于難題.18.(1)見解析(2)【解析】

(Ⅰ)取的中點(diǎn),連結(jié)、,得到故且,進(jìn)而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進(jìn)而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點(diǎn),使得平面,點(diǎn)為棱的中點(diǎn).理由如下:取的中點(diǎn),連結(jié)、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè),則由題意知,,,,,,設(shè)平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內(nèi)的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.【點(diǎn)睛】本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴(yán)密推理,明確角的構(gòu)成,著重考查了分析問題和解答問題的能力.19.(1)(2)證明見解析【解析】

(1)對(duì)函數(shù)求導(dǎo),并設(shè)切點(diǎn),利用點(diǎn)既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),可得至少有一個(gè)零點(diǎn).再證明零點(diǎn)的唯一性,即對(duì)函數(shù)求導(dǎo)得,對(duì)分和兩種情況討論,即可得答案.【詳解】(1)根據(jù)題意,,設(shè)直線與曲線相切于點(diǎn).根據(jù)題意,可得,解之得,所以.(2)由(1)可知,則當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),∴至少有一個(gè)零點(diǎn).∵,①若,則,在上單調(diào)遞增,∴有唯一零點(diǎn).②若令,得有兩個(gè)極值點(diǎn),∵,∴,∴.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.∴極大值為.,又,∴在(0,16)上單調(diào)遞增,∴,∴有唯一零點(diǎn).綜上可知,對(duì)于任意,有且僅有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的運(yùn)用、利用導(dǎo)數(shù)證明函數(shù)的零點(diǎn)個(gè)數(shù),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意零點(diǎn)存在定理的運(yùn)用.20.(1)(2)【解析】

(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡函數(shù),然后,結(jié)合周期公式,得到,再結(jié)合,及正弦函數(shù)的性質(zhì)解答即可.【詳解】(1)因?yàn)?,所以?)因?yàn)榧匆驗(yàn)?,所以所以因?yàn)樗运援?dāng)時(shí),.當(dāng)時(shí),(最大值)當(dāng)時(shí),在是增函數(shù),在是減函數(shù).的值域是.【點(diǎn)睛】本題主要考查了簡單角的三角函數(shù)值的求解方法,兩角和與差的正弦、余弦公式,三角函數(shù)的圖象與性質(zhì)等知識(shí),考查了運(yùn)算求解能力,屬于中檔題.21.(1)l的普通方程;C的直角坐標(biāo)方程;(2).【解析】

(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何意義即可得出,從而建立關(guān)于的方程,求解即可.【詳解】(1)由直線l的參數(shù)方程消去參數(shù)t得,,即為l的普通方程由,兩邊乘以得為C的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論