版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Context-AwareHierarchicalFusion
forDrugRelationalLearning
YijingxiuLu,YinhuaPiao,SangseonLee,SunKimSeoulNationalUniversity
Outline
?Background
?Motivation
?Method
?Experiments
?Summary
Background
DrugRelationalLearning
oCo-administrationofdrugsisacommonpracticeintreatingdiseases.
oChemicalandphysicalreactionsbetweendrugscanaltertheintendedfunctionalityofdrugs.
oComplexbiochemicalmechanismswithinthehumanbodycouldfurtherleadtoadversedrugreactions.
oDiscoveringallpossibledrugcombinationsusing
traditionallaboratory-basedmethodsischallenging.
Synergeticeffect
ondestroyinga
specifictypeof
lungcancercells
Unwanted
chemicalUnexpected
interactionspolypharmacy
sideeffects
Background
DrugRelationalLearning
1.Drug-druginteractionsarecontext-dependent
oE.g.TheconcomitantintakeofTylenolandalcoholcanleadtoliver
damageduetocompetitionforthesamemetabolicenzyme.Tylenol(acetaminophen)Alcohol(Ethanol)
CYP2E1
compete
CYP2E1
NAPQI(toxic)
!
Glutathione
cysteineandmercapturic
acidconjugates
(nontoxic)
Acetaldehyde
insufficient
Unexpectedpolypharmacy
sideeffects
Background
DrugRelationalLearning
2.Drugrelationshipscanchangewithcontext
oE.g.Cabazitaxalandzoledronicacidexhibitsynergyinlungcancercelllinesbutactantagonisticallyinbreastcancertreatment.
Complexmechanismsaffectedbycontextchanges:
oTumormicroenvironments.
oAntagonisminbreastcancer.
oDrugtransportandmetabolism.
Synergeticeffect
ondestroyinga
specifictypeof
9lungcancercells
BackgroundCurrentWorks
Currentworksondrugrelationallearningcanbecategorizedintonetwork-basedandstructure-based.
oNetwork-basedmethods:
oIntegratemulti-omicsdatatoconstructheterogeneousnetworksforinferringDDI.
oStructure-basedmethods:
oDirectlylearnchemicalpropertiesandbiologicalactivitiesfrommolecularstructure.
Network-basedMethods
》
Structure-basedMethods
BackgroundCurrentWorks
Currentworksondrugrelationallearningcanbecategorizedintonetwork-basedandstructure-based.
oNetwork-basedmethods:
oIntegratemulti-omicsdatatoconstructheterogeneousnetworksforinferringDDI.
oStructure-basedmethods:
oDirectlylearnchemicalpropertiesandbiologicalactivitiesfrommolecularstructure.
Howtocombinetheadvantagesofbothandbuildamodelsuitablefornewdrugs?
Network-basedMethodsStructure-basedMethods
Method
HierarchicalInformationFusion
Context-awaredrug-drugrelationallearning:
oInformationfusionbetweendrugs.
oInformationfusionbetweendrug-context.
oDrugfeatureencoderlearnscontext-awarerelationknowledge.
oInferunknownrelationship.
drugi
contextc
drugj
Rdi→c
HiⅡRdj→di
?--------->
Lsup
HjⅡRdi→dj
Rdj→c
Hi
Hc
Hj
Method
ProblemDefinition
Context
oConsiderasetofannotateddrug-drug-contexttriplet
drugi
tuples(di,dj,c,y),wheredi,dj∈D,c∈C,andyisthetargetvariablebelongingtoY.
drugj
oD={d1,d2,...,dn}representacollectionofndrugs,andC={c1,c2,...,cm}denoteasetofmcontexts.
drugk
oHere,yisascalarvalue,rangingfromnegativetopositiveinfinityinregressiontasks,andtakingbinaryvalues(0or1)inclassificationtasks.
relation(e.g.whethertwodrugsi,jexhibitsynergyinaspecificcelllinec)
drugi
drugj
contextc
Method
Context-AwareHierarchicalFusion
1.DrugEncoderandContextEncoder
Weemploy:
oGraphIsomorphismNetwork(GIN)asgraphencoder.
?=MLP(??1+??1)
u∈N(v)
oMulti-LayerPerceptron(MLP)ascontextencoder.
?c=MLP(xc)
contextc
Hc
Method
2.Drug-DrugCrossFusion
Context-AwareHierarchicalFusion
oweemployanatom-wiseinteractionmaptocalculatethe
Hi,Hj
directionalrelationshipRdi→djbetweenapairofdrugsiandj.
Iij=sim
Rdi→dj=I·Hj
Hi∥Rdi→dj
oweupdatetherepresentationofdrugias:
H=concat
3.Drug-ContextCrossFusion
oSimilarly,wecomputetherelationshipsbetweendrugsandcontext:
Iic=simH,HcRdi→c=I·H
Rdi→c
Method
Context-AwareHierarchicalFusion
4.TripletRelationPredictor
oWefeedthefinalhiddenrepresentationofthedrug-drug-contexttripletintoMLPforrelationprediction:
hdi,dj,c=concat(HcⅡRdi→cⅡRdj→c)di,dj,c=MLP(hdi,dj,c)
drugi
c
context
drugj
Rdi→c
HiⅡRdj→di
__--------->
Rdj→c
HjⅡRdi→dj
Hi
Hc
Hj
Lsup
Outline
?Background
?Motivation
?Method
?Experiments
?Summary
Results
BenchmarkDatasets
weconsiderthethreemostpopulartasksindiseasetreatment:
oDrug-DrugSynergytask:
opredictswhetherapairofdrugsdi,djexhibitsynergyinaspecificcelllinec.
oDrug-DrugPolypharmacySideEffecttask:
opredictswhetherapairofdrugsdi,djleadstoaspecificadverseeventc.
oDrug-DrugInteractiontask:
opredictswhetherapairofdrugsdi,djleadstoaparticularreactionc.
Results
Performance
oOurmodelsconsistentlyoutperformthebaselinesacrossalltasks,underscoringtheeffectivenessofourarchitectureinlearningcomplexdrugrelationsacrossdiversetasks.
Results
AblationStudy
Oneofthemostnoteworthydistinctionsbetweenourmodelandotherbaselinesisthatourmodelexplicitlylearnsdrugrelationshierarchicallythroughthedrug-drug-contexttriplet.
Thereisasignificantdropwhenrelationsarenotexplicitlymodeled.
Withouthierarchy,themodel’sperformancedropsbyaround3.3%inAUROC.
suggestingthatthehierarchicalarchitectureeffectivelyfiltersoutfeaturesthatareirrelevanttomodelprediction.
Removingeithersideofthefusionresultsinadropinperformance.
Results
Performanceundercold-drugsetting
Toassessthegeneralizationabilityofourmodelinpredictingrelationshipsbetweenunknowndrugpairs,weadoptedacold-drugsettingbypartitioningasmallsubsetofdrugsfromtheoriginaldataset.
oOurmodeloutperformedothermodelsbyasignificantmarginonDrugBankDDI,andachievecomparableperformancetothebestbaselineonDrugComb.
oInsuchacontext-richenvironment,theabilityofmodelstolearncontextualinformationismorecriticalforperformance.
Summary
MainchallengesinDrugRelationalL
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年醫(yī)學(xué)整形美容服務(wù)協(xié)議
- 2025年員工福利和解合同
- 2025年在線教育運(yùn)營合同
- 2025年公司融資投資人增資協(xié)議
- 2025年代理合作簽約協(xié)議
- 二零二五年度嬰幼兒奶粉產(chǎn)品追溯系統(tǒng)建設(shè)合作協(xié)議3篇
- 2025年項(xiàng)目建議書編制委托人工智能+大數(shù)據(jù)合同模板2篇
- 2025年度健康養(yǎng)生產(chǎn)品居間營銷合同模板4篇
- 跟著2025年新番走:《動漫欣賞》課件帶你領(lǐng)略動漫魅力2篇
- 2025年度智能牧場羊代放牧與物聯(lián)網(wǎng)服務(wù)合同
- 反騷擾政策程序
- 運(yùn)動技能學(xué)習(xí)與控制課件第十一章運(yùn)動技能的練習(xí)
- 射頻在疼痛治療中的應(yīng)用
- 四年級數(shù)學(xué)豎式計(jì)算100道文檔
- “新零售”模式下生鮮電商的營銷策略研究-以盒馬鮮生為例
- 項(xiàng)痹病辨證施護(hù)
- 職業(yè)安全健康工作總結(jié)(2篇)
- 懷化市數(shù)字經(jīng)濟(jì)產(chǎn)業(yè)發(fā)展概況及未來投資可行性研究報(bào)告
- 07FD02 防空地下室電氣設(shè)備安裝
- 教師高中化學(xué)大單元教學(xué)培訓(xùn)心得體會
- 彈簧分離問題經(jīng)典題目
評論
0/150
提交評論