版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE272023年普通高等學(xué)校招生全國(guó)統(tǒng)一考試新課標(biāo)Ⅰ卷數(shù)學(xué)一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知集合,,則()A. B. C. D.2【答案】C【解析】【分析】方法一:由一元二次不等式的解法求出集合,即可根據(jù)交集的運(yùn)算解出.方法二:將集合中的元素逐個(gè)代入不等式驗(yàn)證,即可解出.【詳解】方法一:因?yàn)?,而,所以.故選:C.方法二:因?yàn)?,將代入不等式,只有使不等式成立,所以.故選:C.2.已知,則()A. B. C.0 D.1【答案】A【解析】【分析】根據(jù)復(fù)數(shù)的除法運(yùn)算求出,再由共軛復(fù)數(shù)的概念得到,從而解出.【詳解】因?yàn)椋?,即.故選:A.3.已知向量,若,則()A. B.C. D.【答案】D【解析】【分析】根據(jù)向量的坐標(biāo)運(yùn)算求出,,再根據(jù)向量垂直的坐標(biāo)表示即可求出.【詳解】因?yàn)?,所以,,由可得,,即,整理得:.故選:D.4.設(shè)函數(shù)在區(qū)間上單調(diào)遞減,則的取值范圍是()A. B.C. D.【答案】D【解析】【分析】利用指數(shù)型復(fù)合函數(shù)單調(diào)性,判斷列式計(jì)算作答.【詳解】函數(shù)在R上單調(diào)遞增,而函數(shù)在區(qū)間上單調(diào)遞減,則有函數(shù)在區(qū)間上單調(diào)遞減,因此,解得,所以的取值范圍是.故選:D5.設(shè)橢圓的離心率分別為.若,則()A. B. C. D.【答案】A【解析】【分析】根據(jù)給定的橢圓方程,結(jié)合離心率的意義列式計(jì)算作答.【詳解】由,得,因此,而,所以.故選:A6.過點(diǎn)與圓相切的兩條直線的夾角為,則()A.1 B. C. D.【答案】B【解析】【分析】方法一:根據(jù)切線的性質(zhì)求切線長(zhǎng),結(jié)合倍角公式運(yùn)算求解;方法二:根據(jù)切線的性質(zhì)求切線長(zhǎng),結(jié)合余弦定理運(yùn)算求解;方法三:根據(jù)切線結(jié)合點(diǎn)到直線的距離公式可得,利用韋達(dá)定理結(jié)合夾角公式運(yùn)算求解.【詳解】方法一:因?yàn)?,即,可得圓心,半徑,過點(diǎn)作圓C的切線,切點(diǎn)為,因?yàn)椋瑒t,可得,則,,即為鈍角,所以;法二:圓的圓心,半徑,過點(diǎn)作圓C的切線,切點(diǎn)為,連接,可得,則,因?yàn)榍?,則,即,解得,即為鈍角,則,且為銳角,所以;方法三:圓的圓心,半徑,若切線斜率不存在,則切線方程為,則圓心到切點(diǎn)的距離,不合題意;若切線斜率存在,設(shè)切線方程為,即,則,整理得,且設(shè)兩切線斜率分別為,則,可得,所以,即,可得,則,且,則,解得.故選:B.7.記為數(shù)列的前項(xiàng)和,設(shè)甲:為等差數(shù)列;乙:為等差數(shù)列,則()A.甲是乙的充分條件但不是必要條件B.甲是乙的必要條件但不是充分條件C.甲是乙的充要條件D.甲既不是乙的充分條件也不是乙的必要條件【答案】C【解析】【分析】利用充分條件、必要條件的定義及等差數(shù)列的定義,再結(jié)合數(shù)列前n項(xiàng)和與第n項(xiàng)的關(guān)系推理判斷作答.,【詳解】方法1,甲:為等差數(shù)列,設(shè)其首項(xiàng)為,公差為,則,因此為等差數(shù)列,則甲是乙的充分條件;反之,乙:為等差數(shù)列,即為常數(shù),設(shè)為,即,則,有,兩式相減得:,即,對(duì)也成立,因此為等差數(shù)列,則甲是乙的必要條件,所以甲是乙的充要條件,C正確.方法2,甲:為等差數(shù)列,設(shè)數(shù)列的首項(xiàng),公差為,即,則,因此為等差數(shù)列,即甲是乙的充分條件;反之,乙:等差數(shù)列,即,即,,當(dāng)時(shí),上兩式相減得:,當(dāng)時(shí),上式成立,于是,又為常數(shù),因此為等差數(shù)列,則甲是乙必要條件,所以甲是乙的充要條件.故選:C8.已知,則().A. B. C. D.【答案】B【解析】【分析】根據(jù)給定條件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公式計(jì)算作答.【詳解】因?yàn)?,而,因此,則,所以.故選:B【點(diǎn)睛】方法點(diǎn)睛:三角函數(shù)求值的類型及方法(1)“給角求值”:一般所給出的角都是非特殊角,從表面來看較難,但非特殊角與特殊角總有一定關(guān)系.解題時(shí),要利用觀察得到的關(guān)系,結(jié)合三角函數(shù)公式轉(zhuǎn)化為特殊角的三角函數(shù).(2)“給值求值”:給出某些角的三角函數(shù)值,求另外一些角的三角函數(shù)值,解題關(guān)鍵在于“變角”,使其角相同或具有某種關(guān)系.(3)“給值求角”:實(shí)質(zhì)上也轉(zhuǎn)化為“給值求值”,關(guān)鍵也是變角,把所求角用含已知角的式子表示,由所得的函數(shù)值結(jié)合該函數(shù)的單調(diào)區(qū)間求得角,有時(shí)要壓縮角的取值范圍.二、選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分.9.有一組樣本數(shù)據(jù),其中是最小值,是最大值,則()A.的平均數(shù)等于的平均數(shù)B.的中位數(shù)等于的中位數(shù)C.的標(biāo)準(zhǔn)差不小于的標(biāo)準(zhǔn)差D.的極差不大于的極差【答案】BD【解析】【分析】根據(jù)題意結(jié)合平均數(shù)、中位數(shù)、標(biāo)準(zhǔn)差以及極差的概念逐項(xiàng)分析判斷.【詳解】對(duì)于選項(xiàng)A:設(shè)的平均數(shù)為,的平均數(shù)為,則,因?yàn)闆]有確定的大小關(guān)系,所以無法判斷的大小,例如:,可得;例如,可得;例如,可得;故A錯(cuò)誤;對(duì)于選項(xiàng)B:不妨設(shè),可知的中位數(shù)等于的中位數(shù)均為,故B正確;對(duì)于選項(xiàng)C:因?yàn)槭亲钚≈担亲畲笾?,則的波動(dòng)性不大于的波動(dòng)性,即的標(biāo)準(zhǔn)差不大于的標(biāo)準(zhǔn)差,例如:,則平均數(shù),標(biāo)準(zhǔn)差,,則平均數(shù),標(biāo)準(zhǔn)差,顯然,即;故C錯(cuò)誤;對(duì)于選項(xiàng)D:不妨設(shè),則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故D正確;故選:BD.10.噪聲污染問題越來越受到重視.用聲壓級(jí)來度量聲音的強(qiáng)弱,定義聲壓級(jí),其中常數(shù)是聽覺下限閾值,是實(shí)際聲壓.下表為不同聲源的聲壓級(jí):聲源與聲源的距離聲壓級(jí)燃油汽車10混合動(dòng)力汽車10電動(dòng)汽車1040已知在距離燃油汽車、混合動(dòng)力汽車、電動(dòng)汽車處測(cè)得實(shí)際聲壓分別為,則().A. B.C. D.【答案】ACD【解析】【分析】根據(jù)題意可知,結(jié)合對(duì)數(shù)運(yùn)算逐項(xiàng)分析判斷.【詳解】由題意可知:,對(duì)于選項(xiàng)A:可得,因?yàn)椋瑒t,即,所以且,可得,故A正確;對(duì)于選項(xiàng)B:可得,因?yàn)?,則,即,所以且,可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故B錯(cuò)誤;對(duì)于選項(xiàng)C:因?yàn)?,即,可得,即,故C正確;對(duì)于選項(xiàng)D:由選項(xiàng)A可知:,且,則,即,可得,且,所以,故D正確;故選:ACD.11.已知函數(shù)的定義域?yàn)?,,則().A. B.C.是偶函數(shù) D.為的極小值點(diǎn)【答案】ABC【解析】【分析】方法一:利用賦值法,結(jié)合函數(shù)奇遇性的判斷方法可判斷選項(xiàng)ABC,舉反例即可排除選項(xiàng)D.方法二:選項(xiàng)ABC的判斷與方法一同,對(duì)于D,可構(gòu)造特殊函數(shù)進(jìn)行判斷即可.【詳解】方法一:因?yàn)?,?duì)于A,令,,故正確.對(duì)于B,令,,則,故B正確.對(duì)于C,令,,則,令,又函數(shù)的定義域?yàn)?,所以為偶函?shù),故正確,對(duì)于D,不妨令,顯然符合題設(shè)條件,此時(shí)無極值,故錯(cuò)誤方法二:因?yàn)?,?duì)于A,令,,故正確.對(duì)于B,令,,則,故B正確.對(duì)于C,令,,則,令,又函數(shù)的定義域?yàn)椋詾榕己瘮?shù),故正確,對(duì)于D,當(dāng)時(shí),對(duì)兩邊同時(shí)除以,得到,故可以設(shè),則,當(dāng)肘,,則,令,得;令,得;故在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)闉榕己瘮?shù),所以在上單調(diào)遞增,在上單調(diào)遞減,顯然,此時(shí)是的極大值,故D錯(cuò)誤.故選:.12.下列物體中,能夠被整體放入棱長(zhǎng)為1(單位:m)的正方體容器(容器壁厚度忽略不計(jì))內(nèi)的有()A.直徑為的球體B.所有棱長(zhǎng)均為的四面體C.底面直徑為,高為的圓柱體D.底面直徑為,高為的圓柱體【答案】ABD【解析】【分析】根據(jù)題意結(jié)合正方體的性質(zhì)逐項(xiàng)分析判斷.【詳解】對(duì)于選項(xiàng)A:因?yàn)?,即球體的直徑小于正方體的棱長(zhǎng),所以能夠被整體放入正方體內(nèi),故A正確;對(duì)于選項(xiàng)B:因?yàn)檎襟w的面對(duì)角線長(zhǎng)為,且,所以能夠被整體放入正方體內(nèi),故B正確;對(duì)于選項(xiàng)C:因?yàn)檎襟w的體對(duì)角線長(zhǎng)為,且,所以不能夠被整體放入正方體內(nèi),故C正確;對(duì)于選項(xiàng)D:因?yàn)檎襟w的體對(duì)角線長(zhǎng)為,且,設(shè)正方體的中心為,以為軸對(duì)稱放置圓柱,設(shè)圓柱的底面圓心到正方體的表面的最近的距離為,如圖,結(jié)合對(duì)稱性可知:,則,即,解得,所以能夠被整體放入正方體內(nèi),故D正確;故選:ABD.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:對(duì)于C、D:以正方體的體對(duì)角線為圓柱的軸,結(jié)合正方體以及圓柱的性質(zhì)分析判斷.三、填空題:本題共4小題,每小題5分,共20分.13.某學(xué)校開設(shè)了4門體育類選修課和4門藝術(shù)類選修課,學(xué)生需從這8門課中選修2門或3門課,并且每類選修課至少選修1門,則不同的選課方案共有________種(用數(shù)字作答).【答案】64【解析】【分析】分類討論選修2門或3門課,對(duì)選修3門,再討論具體選修課的分配,結(jié)合組合數(shù)運(yùn)算求解.【詳解】(1)當(dāng)從8門課中選修2門,則不同的選課方案共有種;(2)當(dāng)從8門課中選修3門,①若體育類選修課1門,則不同的選課方案共有種;②若體育類選修課2門,則不同的選課方案共有種;綜上所述:不同的選課方案共有種.故答案:64.14.在正四棱臺(tái)中,,則該棱臺(tái)的體積為________.【答案】##【解析】【分析】結(jié)合圖像,依次求得,從而利用棱臺(tái)的體積公式即可得解.【詳解】如圖,過作,垂足為,易知為四棱臺(tái)的高,因?yàn)?,則,故,則,所以所求體積為.故答案為:.15.已知函數(shù)在區(qū)間有且僅有3個(gè)零點(diǎn),則的取值范圍是________.【答案】【解析】【分析】令,得有3個(gè)根,從而結(jié)合余弦函數(shù)的圖像性質(zhì)即可得解.【詳解】因?yàn)?,所以,令,則有3個(gè)根,令,則有3個(gè)根,其中,結(jié)合余弦函數(shù)的圖像性質(zhì)可得,故,故答案為:.16.已知雙曲線的左、右焦點(diǎn)分別為.點(diǎn)在上,點(diǎn)在軸上,,則的離心率為________.【答案】##【解析】【分析】方法一:利用雙曲線的定義與向量數(shù)積的幾何意義得到關(guān)于的表達(dá)式,從而利用勾股定理求得,進(jìn)而利用余弦定理得到的齊次方程,從而得解.方法二:依題意設(shè)出各點(diǎn)坐標(biāo),從而由向量坐標(biāo)運(yùn)算求得,,將點(diǎn)代入雙曲線得到關(guān)于的齊次方程,從而得解;【詳解】方法一:依題意,設(shè),則,在中,,則,故或(舍去),所以,,則,故,所以在中,,整理得,故.方法二:依題意,得,令,因?yàn)?,所以,則,又,所以,則,又點(diǎn)上,則,整理得,則,所以,即,整理得,則,解得或,又,所以或(舍去),故.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:雙曲線過焦點(diǎn)的三角形的解決關(guān)鍵是充分利用雙曲線的定義,結(jié)合勾股定理與余弦定理得到關(guān)于的齊次方程,從而得解.四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.17.已知在中,.(1)求;(2)設(shè),求邊上的高.【答案】(1)(2)6【解析】【分析】(1)根據(jù)角的關(guān)系及兩角和差正弦公式,化簡(jiǎn)即可得解;(2)利用同角之間的三角函數(shù)基本關(guān)系及兩角和的正弦公式求,再由正弦定理求出,根據(jù)等面積法求解即可.【小問1詳解】,,即,又,,,,即,所以,.【小問2詳解】由(1)知,,由,由正弦定理,,可得,,.18.如圖,在正四棱柱中,.點(diǎn)分別在棱,上,.(1)證明:;(2)點(diǎn)在棱上,當(dāng)二面角為時(shí),求.【答案】(1)證明見解析;(2)1【解析】【分析】(1)建立空間直角坐標(biāo)系,利用向量坐標(biāo)相等證明;(2)設(shè),利用向量法求二面角,建立方程求出即可得解.【小問1詳解】以為坐標(biāo)原點(diǎn),所在直線為軸建立空間直角坐標(biāo)系,如圖,則,,,又不在同一條直線上,.【小問2詳解】設(shè),則,設(shè)平面的法向量,則,令,得,,設(shè)平面的法向量,則,令,得,,,化簡(jiǎn)可得,,解得或,或,.19.已知函數(shù).(1)討論的單調(diào)性;(2)證明:當(dāng)時(shí),.【答案】(1)答案見解析(2)證明見解析【解析】【分析】(1)先求導(dǎo),再分類討論與兩種情況,結(jié)合導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可得解;(2)方法一:結(jié)合(1)中結(jié)論,將問題轉(zhuǎn)化為的恒成立問題,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得即可.方法二:構(gòu)造函數(shù),證得,從而得到,進(jìn)而將問題轉(zhuǎn)化為的恒成立問題,由此得證.【小問1詳解】因?yàn)?,定義域?yàn)?,所以,?dāng)時(shí),由于,則,故恒成立,所以在上單調(diào)遞減;當(dāng)時(shí),令,解得,當(dāng)時(shí),,則在上單調(diào)遞減;當(dāng)時(shí),,則在上單調(diào)遞增;綜上:當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】方法一:由(1)得,,要證,即證,即證恒成立,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時(shí),恒成立,證畢.方法二:令,則,由于在上單調(diào)遞增,所以在上單調(diào)遞增,又,所以當(dāng)時(shí),;當(dāng)時(shí),;所以在上單調(diào)遞減,在上單調(diào)遞增,故,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因?yàn)椋?dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以要證,即證,即證,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時(shí),恒成立,證畢.20.設(shè)等差數(shù)列的公差為,且.令,記分別為數(shù)列的前項(xiàng)和.(1)若,求的通項(xiàng)公式;(2)若為等差數(shù)列,且,求.【答案】(1)(2)【解析】【分析】(1)根據(jù)等差數(shù)列的通項(xiàng)公式建立方程求解即可;(2)由為等差數(shù)列得出或,再由等差數(shù)列的性質(zhì)可得,分類討論即可得解.【小問1詳解】,,解得,,又,,即,解得或(舍去),.【小問2詳解】為等差數(shù)列,,即,,即,解得或,,,又,由等差數(shù)列性質(zhì)知,,即,,即,解得或(舍去)當(dāng)時(shí),,解得,與矛盾,無解;當(dāng)時(shí),,解得.綜上,.21.甲、乙兩人投籃,每次由其中一人投籃,規(guī)則如下:若命中則此人繼續(xù)投籃,若末命中則換為對(duì)方投籃.無論之前投籃情況如何,甲每次投籃的命中率均為0.6,乙每次投籃的命中率均為0.8.由抽簽確定第1次投籃的人選,第1次投籃的人是甲、乙的概率各為0.5.(1)求第2次投籃的人是乙的概率;(2)求第次投籃的人是甲的概率;(3)已知:若隨機(jī)變量服從兩點(diǎn)分布,且,則.記前次(即從第1次到第次投籃)中甲投籃的次數(shù)為,求.【答案】(1)(2)(3)【解析】【分析】(1)根據(jù)全概率公式即可求出;(2)設(shè),由題意可得,根據(jù)數(shù)列知識(shí),構(gòu)造等比數(shù)列即可解出;(3)先求出兩點(diǎn)分布的期望,再根據(jù)題中的結(jié)論以及等比數(shù)列的求和公式即可求出.【小問1詳解】記“第次投籃的人是甲”為事件,“第次投籃的人是乙”為事件,所以,.【小問2詳解】設(shè),依題可知,,則,即,構(gòu)造等比數(shù)列,設(shè),解得,則,又,所以是首項(xiàng)為,公比為的等比數(shù)列,即.【小問3詳解】因?yàn)椋?,所以?dāng)時(shí),,故.【點(diǎn)睛】本題第一問直接考查全概率公式的應(yīng)用,后兩問的解題關(guān)鍵是根據(jù)題意找到遞推式,然后根據(jù)數(shù)列的基本知識(shí)求解.22.在直角坐標(biāo)系中,點(diǎn)到軸的距離等于點(diǎn)到點(diǎn)的距離,記動(dòng)點(diǎn)的軌跡為.(1)求的方程;(2)已知矩形有三個(gè)頂點(diǎn)在上,證明:矩形的周長(zhǎng)大于.【答案】(1)(2)見解析【解析】【分析】(1)設(shè),根據(jù)題意列出方程,化簡(jiǎn)即可;(2)法一:設(shè)矩形的三個(gè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版實(shí)習(xí)指導(dǎo)教師專業(yè)素養(yǎng)提升項(xiàng)目勞動(dòng)合同規(guī)范3篇
- 2025版公益宣傳活動(dòng)宣傳品制作及推廣合同2篇
- 2025版住宅小區(qū)地下車庫(kù)車位租賃及維護(hù)服務(wù)合同范本2篇
- 2025版木工班組智能化設(shè)備引進(jìn)與應(yīng)用合同4篇
- 企業(yè)對(duì)人才需求談職業(yè)
- 2025年度個(gè)人房產(chǎn)維修勞務(wù)合同范本4篇
- 二零二五年度股權(quán)并購(gòu)與國(guó)際化布局合同3篇
- 2025版國(guó)際貿(mào)易采購(gòu)合同(原材料)3篇
- 民政局2025年度自愿離婚協(xié)議書財(cái)產(chǎn)分割與子女撫養(yǎng)協(xié)議范本4篇
- 基于2025年度需求的冷卻塔設(shè)計(jì)、安裝與調(diào)試服務(wù)合同2篇
- 四川省成都市武侯區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末考試化學(xué)試題
- 教育部《中小學(xué)校園食品安全和膳食經(jīng)費(fèi)管理工作指引》知識(shí)培訓(xùn)
- 初一到初三英語單詞表2182個(gè)帶音標(biāo)打印版
- 2024年秋季人教版七年級(jí)上冊(cè)生物全冊(cè)教學(xué)課件(2024年秋季新版教材)
- 環(huán)境衛(wèi)生學(xué)及消毒滅菌效果監(jiān)測(cè)
- 2024年共青團(tuán)入團(tuán)積極分子考試題庫(kù)(含答案)
- 碎屑巖油藏注水水質(zhì)指標(biāo)及分析方法
- 【S洲際酒店婚禮策劃方案設(shè)計(jì)6800字(論文)】
- 鐵路項(xiàng)目征地拆遷工作體會(huì)課件
- 醫(yī)院死亡報(bào)告年終分析報(bào)告
- 中國(guó)教育史(第四版)全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論