山東經(jīng)貿(mào)職業(yè)學(xué)院《大數(shù)據(jù)與風(fēng)險(xiǎn)管理》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
山東經(jīng)貿(mào)職業(yè)學(xué)院《大數(shù)據(jù)與風(fēng)險(xiǎn)管理》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
山東經(jīng)貿(mào)職業(yè)學(xué)院《大數(shù)據(jù)與風(fēng)險(xiǎn)管理》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
山東經(jīng)貿(mào)職業(yè)學(xué)院《大數(shù)據(jù)與風(fēng)險(xiǎn)管理》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)山東經(jīng)貿(mào)職業(yè)學(xué)院《大數(shù)據(jù)與風(fēng)險(xiǎn)管理》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),需要找出不同變量之間的關(guān)系。假設(shè)要分析客戶(hù)購(gòu)買(mǎi)行為與促銷(xiāo)活動(dòng)之間的關(guān)聯(lián),以下關(guān)于關(guān)聯(lián)分析方法的描述,正確的是:()A.只關(guān)注表面的關(guān)聯(lián),不深入分析內(nèi)在的因果關(guān)系B.不考慮數(shù)據(jù)的分布和異常值,直接進(jìn)行關(guān)聯(lián)分析C.運(yùn)用關(guān)聯(lián)規(guī)則挖掘、相關(guān)性分析等方法,同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)背景,挖掘有價(jià)值的關(guān)聯(lián)模式,并對(duì)結(jié)果進(jìn)行解釋和驗(yàn)證D.認(rèn)為關(guān)聯(lián)分析結(jié)果一定能直接用于制定營(yíng)銷(xiāo)策略,不進(jìn)行進(jìn)一步的評(píng)估和優(yōu)化2、在進(jìn)行數(shù)據(jù)抽樣時(shí),需要選擇合適的抽樣方法。假設(shè)我們有一個(gè)大規(guī)模的數(shù)據(jù)集,以下關(guān)于抽樣方法選擇的描述,正確的是:()A.簡(jiǎn)單隨機(jī)抽樣能夠保證樣本的代表性,適用于任何情況B.分層抽樣在數(shù)據(jù)存在明顯分層特征時(shí)效果不佳C.系統(tǒng)抽樣比隨機(jī)抽樣更能準(zhǔn)確反映總體特征D.整群抽樣可以節(jié)省抽樣成本,但可能導(dǎo)致樣本偏差較大3、在進(jìn)行數(shù)據(jù)分析時(shí),數(shù)據(jù)采樣是一種常見(jiàn)的技術(shù)。假設(shè)要從一個(gè)大規(guī)模的數(shù)據(jù)集中抽取樣本進(jìn)行分析,以下關(guān)于數(shù)據(jù)采樣的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)采樣能夠保證每個(gè)數(shù)據(jù)點(diǎn)被抽取的概率相等,具有較好的代表性B.分層采樣可以根據(jù)某些特征將數(shù)據(jù)集分層,然后從各層中抽取樣本,以確保樣本的多樣性C.采樣的樣本量越大,分析結(jié)果就越接近總體的真實(shí)情況,但也會(huì)增加計(jì)算成本D.數(shù)據(jù)采樣可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的分布和特征4、數(shù)據(jù)分析中的文本挖掘用于從大量文本數(shù)據(jù)中提取有價(jià)值的信息。假設(shè)要從客戶(hù)的評(píng)價(jià)文本中挖掘他們的滿意度,以下關(guān)于文本挖掘的描述,哪一項(xiàng)是不正確的?()A.可以使用詞袋模型將文本轉(zhuǎn)換為數(shù)值向量,以便進(jìn)行后續(xù)的分析B.情感分析能夠判斷文本的情感傾向,如積極、消極或中性C.主題模型可以發(fā)現(xiàn)文本中的潛在主題,但無(wú)法確定每個(gè)文本所屬的具體主題D.文本挖掘不需要對(duì)文本進(jìn)行預(yù)處理,如分詞和去除停用詞5、關(guān)于數(shù)據(jù)分析中的客戶(hù)細(xì)分,假設(shè)要根據(jù)客戶(hù)的購(gòu)買(mǎi)行為、人口統(tǒng)計(jì)信息和在線活動(dòng)將客戶(hù)分為不同的細(xì)分群體。以下哪種細(xì)分方法可能更能揭示客戶(hù)的潛在需求和行為模式?()A.RFM模型,基于消費(fèi)頻率、金額和最近消費(fèi)時(shí)間B.基于聚類(lèi)的細(xì)分,自動(dòng)發(fā)現(xiàn)相似群體C.基于決策樹(shù)的細(xì)分,根據(jù)規(guī)則劃分D.不進(jìn)行客戶(hù)細(xì)分,對(duì)所有客戶(hù)采用相同的策略6、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關(guān)重要。關(guān)于描述性統(tǒng)計(jì)分析和推斷性統(tǒng)計(jì)分析,以下敘述不正確的是()A.描述性統(tǒng)計(jì)分析主要用于對(duì)數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形態(tài)進(jìn)行描述和總結(jié)B.推斷性統(tǒng)計(jì)分析則是基于樣本數(shù)據(jù)對(duì)總體特征進(jìn)行估計(jì)和假設(shè)檢驗(yàn)C.描述性統(tǒng)計(jì)分析只能提供數(shù)據(jù)的基本信息,對(duì)于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關(guān)系作用有限D(zhuǎn).在實(shí)際應(yīng)用中,通常先進(jìn)行描述性統(tǒng)計(jì)分析,然后根據(jù)研究目的和數(shù)據(jù)特點(diǎn)選擇是否進(jìn)行推斷性統(tǒng)計(jì)分析7、對(duì)于一個(gè)具有分類(lèi)和數(shù)值型特征的數(shù)據(jù)集合,若要進(jìn)行預(yù)處理,以下哪些步驟可能會(huì)被包括?()A.編碼分類(lèi)特征B.處理異常值C.標(biāo)準(zhǔn)化數(shù)值型特征D.以上都是8、假設(shè)要分析電商平臺(tái)上的用戶(hù)購(gòu)買(mǎi)行為隨時(shí)間的變化,以下關(guān)于時(shí)間序列分析的描述,正確的是:()A.不考慮季節(jié)性因素,直接進(jìn)行時(shí)間序列建模B.時(shí)間序列分解可以將數(shù)據(jù)分解為趨勢(shì)、季節(jié)性和隨機(jī)成分,有助于深入分析C.短期的時(shí)間序列數(shù)據(jù)比長(zhǎng)期的數(shù)據(jù)更有分析價(jià)值D.時(shí)間序列分析只能用于預(yù)測(cè)未來(lái),不能用于解釋過(guò)去的行為模式9、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時(shí)保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu)?()A.t-SNE算法B.MDS算法C.UMAP算法D.以上都是10、數(shù)據(jù)分析中,數(shù)據(jù)挖掘的過(guò)程包括多個(gè)步驟。以下關(guān)于數(shù)據(jù)挖掘過(guò)程的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘的過(guò)程包括數(shù)據(jù)準(zhǔn)備、數(shù)據(jù)挖掘、結(jié)果解釋和評(píng)估等步驟B.數(shù)據(jù)準(zhǔn)備階段包括數(shù)據(jù)清洗、數(shù)據(jù)集成和數(shù)據(jù)轉(zhuǎn)換等工作C.數(shù)據(jù)挖掘階段可以使用多種算法和技術(shù),如決策樹(shù)、聚類(lèi)、關(guān)聯(lián)規(guī)則挖掘等D.數(shù)據(jù)挖掘的結(jié)果不需要進(jìn)行解釋和評(píng)估,直接應(yīng)用于實(shí)際問(wèn)題即可11、在進(jìn)行數(shù)據(jù)清洗時(shí),發(fā)現(xiàn)數(shù)據(jù)存在重復(fù)記錄。以下哪種方法可以有效地去除重復(fù)記錄?()A.手動(dòng)篩選B.使用數(shù)據(jù)庫(kù)的去重功能C.隨機(jī)刪除一部分重復(fù)記錄D.對(duì)重復(fù)記錄進(jìn)行合并12、在進(jìn)行數(shù)據(jù)分析時(shí),需要選擇合適的評(píng)估指標(biāo)來(lái)衡量模型的性能。假設(shè)要評(píng)估一個(gè)分類(lèi)模型的效果,以下關(guān)于評(píng)估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是正確分類(lèi)的樣本數(shù)占總樣本數(shù)的比例,但在類(lèi)別不平衡的情況下可能不準(zhǔn)確B.召回率衡量了正類(lèi)樣本被正確預(yù)測(cè)的比例,適用于關(guān)注正類(lèi)樣本的情況C.F1值綜合了準(zhǔn)確率和召回率,是一個(gè)較為平衡的評(píng)估指標(biāo),但計(jì)算較為復(fù)雜D.評(píng)估指標(biāo)的選擇只取決于數(shù)據(jù)的特點(diǎn),與模型的類(lèi)型和應(yīng)用場(chǎng)景無(wú)關(guān)13、對(duì)于一個(gè)包含分類(lèi)變量和數(shù)值變量的數(shù)據(jù)集,若要進(jìn)行關(guān)聯(lián)規(guī)則挖掘,以下哪種方法較為合適?()A.Apriori算法B.FP-Growth算法C.Eclat算法D.以上都是14、對(duì)于一組具有明顯層次結(jié)構(gòu)的數(shù)據(jù),以下哪種數(shù)據(jù)分析方法較為合適?()A.層次聚類(lèi)B.K-Means聚類(lèi)C.密度聚類(lèi)D.均值漂移聚類(lèi)15、對(duì)于一個(gè)聚類(lèi)問(wèn)題,如果事先不知道聚類(lèi)的類(lèi)別數(shù),以下哪種方法可以幫助確定合適的類(lèi)別數(shù)?()A.肘部法則B.輪廓系數(shù)C.Calinski-Harabasz指數(shù)D.以上都是16、在進(jìn)行假設(shè)檢驗(yàn)時(shí),如果p值小于設(shè)定的顯著性水平(如0.05),我們通常會(huì)得出以下哪種結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無(wú)法確定是否拒絕原假設(shè)D.需要重新進(jìn)行實(shí)驗(yàn)17、在進(jìn)行數(shù)據(jù)可視化時(shí),如果數(shù)據(jù)的量級(jí)差異較大,為了更清晰地展示數(shù)據(jù)分布,以下哪種處理方式較為合適?()A.使用相同的坐標(biāo)軸刻度B.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理C.只展示部分?jǐn)?shù)據(jù)D.采用多個(gè)圖表分別展示18、數(shù)據(jù)分析中的文本挖掘用于從大量文本數(shù)據(jù)中提取有價(jià)值的信息。假設(shè)我們要從客戶(hù)的評(píng)論中分析產(chǎn)品的優(yōu)缺點(diǎn)。以下關(guān)于文本挖掘的描述,哪一項(xiàng)是不正確的?()A.詞袋模型將文本表示為詞的集合,忽略詞的順序和語(yǔ)法B.情感分析可以判斷文本的情感傾向,如積極、消極或中性C.主題模型能夠發(fā)現(xiàn)文本中的潛在主題和話題D.文本挖掘能夠完全理解文本的深層含義和語(yǔ)義關(guān)系,無(wú)需人工干預(yù)19、當(dāng)分析一個(gè)網(wǎng)站的用戶(hù)訪問(wèn)數(shù)據(jù),包括頁(yè)面瀏覽量、停留時(shí)間、跳出率等,以改進(jìn)網(wǎng)站的用戶(hù)體驗(yàn)和布局設(shè)計(jì)。為了確定哪些頁(yè)面需要重點(diǎn)優(yōu)化,以下哪個(gè)指標(biāo)可能是最有價(jià)值的?()A.頁(yè)面瀏覽量B.平均停留時(shí)間C.跳出率D.以上都是20、對(duì)于數(shù)據(jù)分析中的因果推斷,假設(shè)要確定一個(gè)因素是否真正導(dǎo)致了某種結(jié)果。以下哪種方法或思路在進(jìn)行因果分析時(shí)可能是關(guān)鍵的?()A.隨機(jī)對(duì)照試驗(yàn)B.觀察性研究結(jié)合工具變量C.反事實(shí)推理D.僅根據(jù)相關(guān)性得出因果結(jié)論二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)歸檔策略,說(shuō)明如何確定需要?dú)w檔的數(shù)據(jù)、歸檔的頻率和存儲(chǔ)方式,以?xún)?yōu)化數(shù)據(jù)倉(cāng)庫(kù)的性能。2、(本題5分)說(shuō)明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的異常值檢測(cè)和修正?請(qǐng)闡述常見(jiàn)的檢測(cè)方法和修正策略,并舉例說(shuō)明在工業(yè)生產(chǎn)數(shù)據(jù)中的應(yīng)用。3、(本題5分)在處理能源數(shù)據(jù)時(shí),常用的數(shù)據(jù)分析方法和技術(shù)有哪些?解釋能源消耗預(yù)測(cè)、智能電網(wǎng)優(yōu)化等概念,并舉例說(shuō)明應(yīng)用。4、(本題5分)簡(jiǎn)述數(shù)據(jù)挖掘中的隱私保護(hù)問(wèn)題,介紹應(yīng)對(duì)隱私泄露風(fēng)險(xiǎn)的技術(shù)和策略,如差分隱私、同態(tài)加密等。5、(本題5分)簡(jiǎn)述數(shù)據(jù)隱私保護(hù)在數(shù)據(jù)分析中的重要性,介紹常見(jiàn)的數(shù)據(jù)隱私保護(hù)技術(shù)和方法,如加密、匿名化等。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某社交平臺(tái)收集了用戶(hù)的注冊(cè)信息、登錄時(shí)間、發(fā)布內(nèi)容、關(guān)注關(guān)系等數(shù)據(jù)。分析用戶(hù)的活躍時(shí)間段分布,以及不同類(lèi)型發(fā)布內(nèi)容的受歡迎程度和傳播范圍。2、(本題5分)某電商企業(yè)收集了不同支付方式的使用數(shù)據(jù)、支付安全風(fēng)險(xiǎn)評(píng)估、用戶(hù)支付習(xí)慣等。分析如何依據(jù)這些數(shù)據(jù)優(yōu)化支付體驗(yàn)和降低支付風(fēng)險(xiǎn)。3、(本題5分)一家書(shū)店擁有圖書(shū)銷(xiāo)售數(shù)據(jù)、讀者年齡分布、熱門(mén)書(shū)籍類(lèi)別等信息。優(yōu)化書(shū)店的圖書(shū)采購(gòu)和陳列策略,滿足讀者需求。4、(本題5分)某在線足球裝備銷(xiāo)售平臺(tái)記錄了銷(xiāo)售數(shù)據(jù)、足球賽事影響、用戶(hù)偏好變化等。及時(shí)調(diào)整足球裝備的庫(kù)存和營(yíng)銷(xiāo)策略。5、(本題5分)某電商平臺(tái)的家居用品類(lèi)目存有銷(xiāo)售數(shù)據(jù),包括品牌、產(chǎn)品類(lèi)別、價(jià)格、銷(xiāo)量、用戶(hù)地域等。分析不同地域用戶(hù)對(duì)各品牌和產(chǎn)品類(lèi)別的購(gòu)買(mǎi)差異及價(jià)格敏感度。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)隨著智能制造的推進(jìn),工廠的生產(chǎn)設(shè)備運(yùn)行數(shù)據(jù)、生產(chǎn)流程數(shù)據(jù)等日益豐富。論述如何通過(guò)數(shù)據(jù)分析技術(shù),像生產(chǎn)效率優(yōu)化、設(shè)備故障預(yù)測(cè)等,實(shí)現(xiàn)制造業(yè)的智能化升級(jí),同時(shí)思考在數(shù)據(jù)標(biāo)準(zhǔn)化難度大、工業(yè)協(xié)議多樣和行業(yè)經(jīng)驗(yàn)依賴(lài)方面的挑戰(zhàn)及應(yīng)對(duì)措施。2、(本題10分)社

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論