菏澤職業(yè)學(xué)院《神經(jīng)網(wǎng)絡(luò)計算機(jī)視覺》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
菏澤職業(yè)學(xué)院《神經(jīng)網(wǎng)絡(luò)計算機(jī)視覺》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
菏澤職業(yè)學(xué)院《神經(jīng)網(wǎng)絡(luò)計算機(jī)視覺》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
菏澤職業(yè)學(xué)院《神經(jīng)網(wǎng)絡(luò)計算機(jī)視覺》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
菏澤職業(yè)學(xué)院《神經(jīng)網(wǎng)絡(luò)計算機(jī)視覺》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁菏澤職業(yè)學(xué)院

《神經(jīng)網(wǎng)絡(luò)計算機(jī)視覺》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、假設(shè)要為一個智能推薦系統(tǒng)選擇算法,根據(jù)用戶的歷史行為、興趣偏好和社交關(guān)系為其推薦相關(guān)的產(chǎn)品或內(nèi)容。以下哪種算法或技術(shù)可能是最適合的?()A.基于協(xié)同過濾的推薦算法,利用用戶之間的相似性或物品之間的相關(guān)性進(jìn)行推薦,但存在冷啟動和數(shù)據(jù)稀疏問題B.基于內(nèi)容的推薦算法,根據(jù)物品的特征和用戶的偏好匹配推薦,但對新物品的推薦能力有限C.混合推薦算法,結(jié)合協(xié)同過濾和內(nèi)容推薦的優(yōu)點,并通過特征工程和模型融合提高推薦效果,但實現(xiàn)復(fù)雜D.基于強(qiáng)化學(xué)習(xí)的推薦算法,通過與用戶的交互不斷優(yōu)化推薦策略,但訓(xùn)練難度大且收斂慢2、某研究團(tuán)隊正在開發(fā)一個語音識別系統(tǒng),需要對語音信號進(jìn)行特征提取。以下哪種特征在語音識別中被廣泛使用?()A.梅爾頻率倒譜系數(shù)(MFCC)B.線性預(yù)測編碼(LPC)C.感知線性預(yù)測(PLP)D.以上特征都常用3、在構(gòu)建機(jī)器學(xué)習(xí)模型時,選擇合適的正則化方法可以防止過擬合。假設(shè)我們正在訓(xùn)練一個邏輯回歸模型。以下關(guān)于正則化的描述,哪一項是錯誤的?()A.L1正則化會使部分模型參數(shù)變?yōu)?,從而實現(xiàn)特征選擇B.L2正則化通過對模型參數(shù)的平方和進(jìn)行懲罰,使參數(shù)值變小C.正則化參數(shù)越大,對模型的約束越強(qiáng),可能導(dǎo)致模型欠擬合D.同時使用L1和L2正則化(ElasticNet)總是比單獨使用L1或L2正則化效果好4、假設(shè)正在比較不同的聚類算法,用于對一組沒有標(biāo)簽的客戶數(shù)據(jù)進(jìn)行分組。如果數(shù)據(jù)分布不規(guī)則且存在不同密度的簇,以下哪種聚類算法可能更適合?()A.K-Means算法B.層次聚類算法C.密度聚類算法(DBSCAN)D.均值漂移聚類算法5、在進(jìn)行模型選擇時,除了考慮模型的性能指標(biāo),還需要考慮模型的復(fù)雜度和可解釋性。假設(shè)我們有多個候選模型。以下關(guān)于模型選擇的描述,哪一項是不正確的?()A.復(fù)雜的模型通常具有更高的擬合能力,但也更容易過擬合B.簡單的模型雖然擬合能力有限,但更容易解釋和理解C.對于一些對可解釋性要求較高的任務(wù),如醫(yī)療診斷,應(yīng)優(yōu)先選擇復(fù)雜的黑盒模型D.在實際應(yīng)用中,需要根據(jù)具體問題和需求綜合權(quán)衡模型的性能、復(fù)雜度和可解釋性6、考慮一個回歸問題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預(yù)測值與真實值之間的MSE較大,這意味著什么()A.模型的預(yù)測非常準(zhǔn)確B.模型存在過擬合C.模型存在欠擬合D.無法確定模型的性能7、在機(jī)器學(xué)習(xí)中,模型的可解釋性是一個重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹B.神經(jīng)網(wǎng)絡(luò)C.隨機(jī)森林D.支持向量機(jī)8、假設(shè)要對一個復(fù)雜的數(shù)據(jù)集進(jìn)行降維,以便于可視化和后續(xù)分析。以下哪種降維方法可能是最有效的?()A.主成分分析(PCA),尋找數(shù)據(jù)的主要方向,但可能丟失一些局部信息B.線性判別分析(LDA),考慮類別信息,但對非線性結(jié)構(gòu)不敏感C.t-分布隨機(jī)鄰域嵌入(t-SNE),能夠保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu),但計算復(fù)雜度高D.以上方法結(jié)合使用,根據(jù)數(shù)據(jù)特點和分析目的選擇合適的降維策略9、假設(shè)正在研究一個自然語言處理任務(wù),需要對句子進(jìn)行語義理解。以下哪種深度學(xué)習(xí)模型在捕捉句子的長期依賴關(guān)系方面表現(xiàn)較好?()A.雙向長短時記憶網(wǎng)絡(luò)(BiLSTM)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)D.以上模型都有其特點10、假設(shè)正在構(gòu)建一個推薦系統(tǒng),需要根據(jù)用戶的歷史行為和偏好為其推薦相關(guān)的產(chǎn)品或內(nèi)容。如果數(shù)據(jù)具有稀疏性和冷啟動問題,以下哪種方法可以幫助改善推薦效果?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.混合推薦D.以上方法都可以嘗試11、機(jī)器學(xué)習(xí)在圖像識別領(lǐng)域也取得了巨大的成功。以下關(guān)于機(jī)器學(xué)習(xí)在圖像識別中的說法中,錯誤的是:機(jī)器學(xué)習(xí)可以用于圖像分類、目標(biāo)檢測、圖像分割等任務(wù)。常見的圖像識別算法有卷積神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在圖像識別中的說法錯誤的是()A.卷積神經(jīng)網(wǎng)絡(luò)通過卷積層和池化層自動學(xué)習(xí)圖像的特征表示B.支持向量機(jī)在圖像識別中的性能通常不如卷積神經(jīng)網(wǎng)絡(luò)C.圖像識別算法的性能主要取決于數(shù)據(jù)的質(zhì)量和數(shù)量,與算法本身關(guān)系不大D.機(jī)器學(xué)習(xí)在圖像識別中的應(yīng)用還面臨著一些挑戰(zhàn),如小樣本學(xué)習(xí)、對抗攻擊等12、在進(jìn)行特征工程時,如果特征之間存在共線性,即一個特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關(guān)特征B.對特征進(jìn)行主成分分析C.對特征進(jìn)行標(biāo)準(zhǔn)化D.以上都可以13、在機(jī)器學(xué)習(xí)中,數(shù)據(jù)預(yù)處理是非常重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)預(yù)處理的說法中,錯誤的是:數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)歸一化、數(shù)據(jù)標(biāo)準(zhǔn)化等步驟。目的是提高數(shù)據(jù)的質(zhì)量和可用性。那么,下列關(guān)于數(shù)據(jù)預(yù)處理的說法錯誤的是()A.數(shù)據(jù)清洗可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)歸一化將數(shù)據(jù)映射到[0,1]區(qū)間,便于不同特征之間的比較C.數(shù)據(jù)標(biāo)準(zhǔn)化將數(shù)據(jù)的均值和標(biāo)準(zhǔn)差調(diào)整為特定的值D.數(shù)據(jù)預(yù)處理對模型的性能影響不大,可以忽略14、在機(jī)器學(xué)習(xí)中,對于一個分類問題,我們需要選擇合適的算法來提高預(yù)測準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時樣本數(shù)量相對較少。在這種情況下,以下哪種算法可能是一個較好的選擇?()A.邏輯回歸B.決策樹C.支持向量機(jī)D.樸素貝葉斯15、在進(jìn)行特征工程時,需要對連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類的離散化D.基于決策樹的離散化二、簡答題(本大題共3個小題,共15分)1、(本題5分)機(jī)器學(xué)習(xí)在自然語言處理中的任務(wù)有哪些?2、(本題5分)解釋機(jī)器學(xué)習(xí)中多層感知機(jī)(MLP)的結(jié)構(gòu)。3、(本題5分)說明機(jī)器學(xué)習(xí)在運動醫(yī)學(xué)中的損傷評估。三、論述題(本大題共5個小題,共25分)1、(本題5分)分析機(jī)器學(xué)習(xí)中的聚類算法及其在數(shù)據(jù)分析中的作用。聚類算法可以將數(shù)據(jù)分為不同的組,幫助發(fā)現(xiàn)數(shù)據(jù)中的潛在模式。介紹常見的聚類算法,如K-Means算法等,并討論其在數(shù)據(jù)分析、市場細(xì)分等領(lǐng)域的應(yīng)用。2、(本題5分)探討機(jī)器學(xué)習(xí)在城市交通出行規(guī)劃中的應(yīng)用,如公交線路優(yōu)化、共享單車調(diào)度等,分析其對城市交通效率的提升。3、(本題5分)分析機(jī)器學(xué)習(xí)在金融信用評估中的應(yīng)用。舉例說明機(jī)器學(xué)習(xí)在個人信用評估、企業(yè)信用評估、小額貸款信用評估等方面的應(yīng)用,并探討其對金融信用評估的影響及未來發(fā)展趨勢。4、(本題5分)論述在機(jī)器學(xué)習(xí)中,如何利用主動學(xué)習(xí)(ActiveLearning)減少標(biāo)注工作量。探討主動學(xué)習(xí)的策略和選擇樣本的方法。5、(本題5分)闡述機(jī)器學(xué)習(xí)中的多模態(tài)融合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論