版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)蘭州石化職業(yè)技術(shù)大學(xué)《綜合評(píng)價(jià)》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)庫(kù)管理中,若要確保數(shù)據(jù)的一致性和完整性,通常會(huì)使用哪種約束?()A.主鍵約束B(niǎo).外鍵約束C.唯一約束D.以上都是2、數(shù)據(jù)分析中,數(shù)據(jù)可視化的作用不僅僅是美觀。以下關(guān)于數(shù)據(jù)可視化作用的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢(shì)B.數(shù)據(jù)可視化可以提高數(shù)據(jù)分析的效率,減少分析時(shí)間和成本C.數(shù)據(jù)可視化可以增強(qiáng)數(shù)據(jù)的說(shuō)服力和影響力,使分析結(jié)果更容易被接受D.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)分析報(bào)告看起來(lái)更漂亮,對(duì)分析結(jié)果沒(méi)有實(shí)質(zhì)性的幫助3、在數(shù)據(jù)分析中,模型的可解釋性對(duì)于理解和信任模型結(jié)果很重要。假設(shè)你建立了一個(gè)復(fù)雜的機(jī)器學(xué)習(xí)模型,以下關(guān)于提高模型可解釋性的方法,哪一項(xiàng)是最有效的?()A.使用黑盒模型,不關(guān)注可解釋性B.繪制模型的決策樹(shù),直觀展示決策過(guò)程C.只關(guān)注模型的預(yù)測(cè)準(zhǔn)確率,不考慮解釋性D.對(duì)模型的內(nèi)部工作原理不做任何解釋?zhuān)層脩?hù)自行理解4、在數(shù)據(jù)分析中,數(shù)據(jù)安全的措施有很多,其中訪問(wèn)控制是一種重要的措施。以下關(guān)于訪問(wèn)控制的描述中,錯(cuò)誤的是?()A.訪問(wèn)控制可以限制用戶(hù)對(duì)數(shù)據(jù)的訪問(wèn)權(quán)限B.訪問(wèn)控制可以防止數(shù)據(jù)的泄露和篡改C.訪問(wèn)控制可以分為身份認(rèn)證和授權(quán)兩個(gè)環(huán)節(jié)D.訪問(wèn)控制只適用于企業(yè)內(nèi)部的數(shù)據(jù)管理,對(duì)于外部數(shù)據(jù)無(wú)法進(jìn)行控制5、數(shù)據(jù)分析中的文本分類(lèi)任務(wù)需要對(duì)大量文本進(jìn)行自動(dòng)分類(lèi)。假設(shè)要對(duì)新聞文章進(jìn)行分類(lèi),如政治、經(jīng)濟(jì)、體育等類(lèi)別,文本內(nèi)容多樣且語(yǔ)言表達(dá)復(fù)雜。以下哪種方法在處理這種多類(lèi)別文本分類(lèi)問(wèn)題時(shí)更能提高分類(lèi)準(zhǔn)確性?()A.使用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.基于詞向量的傳統(tǒng)機(jī)器學(xué)習(xí)分類(lèi)算法C.依賴(lài)人工制定的分類(lèi)規(guī)則D.隨機(jī)分類(lèi)6、在進(jìn)行時(shí)間序列分析時(shí),如果數(shù)據(jù)存在明顯的長(zhǎng)期趨勢(shì)和季節(jié)性變動(dòng),以下哪種模型較為適用?()A.ARIMA模型B.SARIMA模型C.Holt-Winters模型D.以上都不是7、在數(shù)據(jù)分析中,評(píng)估模型的性能是關(guān)鍵步驟。假設(shè)建立了一個(gè)預(yù)測(cè)客戶(hù)流失的模型,需要評(píng)估模型在不同閾值下的準(zhǔn)確性、召回率和F1值等指標(biāo)。以下哪種評(píng)估方法在這種客戶(hù)關(guān)系管理場(chǎng)景中能夠更全面地評(píng)估模型的性能?()A.交叉驗(yàn)證B.留出法C.自助法D.以上方法效果相同8、主成分分析(PCA)是一種數(shù)據(jù)降維技術(shù)。假設(shè)要對(duì)高維數(shù)據(jù)進(jìn)行降維以便于分析和可視化,以下關(guān)于主成分分析的描述,正確的是:()A.不考慮數(shù)據(jù)的方差和相關(guān)性,直接進(jìn)行主成分提取B.提取過(guò)多的主成分,導(dǎo)致信息冗余,增加分析的復(fù)雜性C.合理確定保留的主成分?jǐn)?shù)量,使其能夠在最大程度保留原始數(shù)據(jù)信息的同時(shí)降低維度,并解釋主成分的含義D.認(rèn)為主成分分析可以適用于所有類(lèi)型的數(shù)據(jù),不進(jìn)行數(shù)據(jù)的預(yù)處理和適用性評(píng)估9、假設(shè)要分析某公司產(chǎn)品在不同市場(chǎng)的銷(xiāo)售趨勢(shì),同時(shí)考慮市場(chǎng)的競(jìng)爭(zhēng)情況和宏觀經(jīng)濟(jì)環(huán)境,以下哪種分析方法較為綜合?()A.情景分析B.敏感性分析C.蒙特卡羅模擬D.以上都不是10、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時(shí)保留數(shù)據(jù)的主要特征?()A.主成分分析B.因子分析C.線性判別分析D.以上都是11、數(shù)據(jù)分析中的文本挖掘用于從大量文本數(shù)據(jù)中提取有價(jià)值的信息。假設(shè)我們要從客戶(hù)的評(píng)論中分析產(chǎn)品的優(yōu)缺點(diǎn)。以下關(guān)于文本挖掘的描述,哪一項(xiàng)是不正確的?()A.詞袋模型將文本表示為詞的集合,忽略詞的順序和語(yǔ)法B.情感分析可以判斷文本的情感傾向,如積極、消極或中性C.主題模型能夠發(fā)現(xiàn)文本中的潛在主題和話題D.文本挖掘能夠完全理解文本的深層含義和語(yǔ)義關(guān)系,無(wú)需人工干預(yù)12、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行缺失值處理,同時(shí)考慮數(shù)據(jù)的分布特征,以下哪種方法較為合適?()A.隨機(jī)森林插補(bǔ)B.基于聚類(lèi)的插補(bǔ)C.基于回歸的插補(bǔ)D.以上都不是13、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)抽樣可以減少數(shù)據(jù)分析的時(shí)間和成本,同時(shí)保證樣本具有代表性B.隨機(jī)抽樣是一種常用的數(shù)據(jù)抽樣方法,能夠確保每個(gè)數(shù)據(jù)點(diǎn)被選中的概率相等C.分層抽樣可以根據(jù)某些特征將數(shù)據(jù)分為不同層次,然后從各層次中進(jìn)行抽樣D.數(shù)據(jù)抽樣的樣本大小越大,分析結(jié)果就越準(zhǔn)確,因此應(yīng)盡量選擇大樣本14、對(duì)于一個(gè)存在異常值的數(shù)據(jù)集合,以下哪種描述性統(tǒng)計(jì)量對(duì)異常值較為敏感?()A.中位數(shù)B.眾數(shù)C.均值D.四分位數(shù)15、在數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理階段,以下關(guān)于數(shù)據(jù)標(biāo)準(zhǔn)化和歸一化的敘述,不準(zhǔn)確的是()A.數(shù)據(jù)標(biāo)準(zhǔn)化是將數(shù)據(jù)轉(zhuǎn)換為具有零均值和單位方差的分布,使不同特征在數(shù)值上具有可比性B.數(shù)據(jù)歸一化是將數(shù)據(jù)映射到特定的區(qū)間,如[0,1]或[-1,1],以消除量綱的影響C.標(biāo)準(zhǔn)化和歸一化對(duì)于某些算法(如基于距離的算法)的性能提升有幫助,但不是必需的步驟D.無(wú)論數(shù)據(jù)的分布和特征如何,都應(yīng)該進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,以確保分析結(jié)果的準(zhǔn)確性16、在構(gòu)建數(shù)據(jù)分析模型時(shí),需要對(duì)模型進(jìn)行評(píng)估和選擇。假設(shè)我們構(gòu)建了多個(gè)預(yù)測(cè)模型,如線性回歸、決策樹(shù)和神經(jīng)網(wǎng)絡(luò),以下哪種評(píng)估指標(biāo)可能最能反映模型在實(shí)際應(yīng)用中的性能?()A.訓(xùn)練集上的準(zhǔn)確率B.測(cè)試集上的均方誤差C.模型的復(fù)雜度D.模型的訓(xùn)練時(shí)間17、當(dāng)分析一組數(shù)據(jù)的離散程度時(shí),以下哪個(gè)指標(biāo)不僅考慮了數(shù)據(jù)的偏離程度,還考慮了數(shù)據(jù)的分布形態(tài)?()A.方差B.標(biāo)準(zhǔn)差C.平均差D.變異系數(shù)18、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶(hù)信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)刪除包含大量缺失值的記錄來(lái)簡(jiǎn)化數(shù)據(jù),但可能會(huì)丟失有價(jià)值的信息B.對(duì)于錯(cuò)誤的數(shù)據(jù),可以根據(jù)數(shù)據(jù)的分布和邏輯關(guān)系進(jìn)行修正或刪除C.重復(fù)記錄的處理只需保留其中一條,對(duì)分析結(jié)果沒(méi)有實(shí)質(zhì)性影響D.數(shù)據(jù)清洗的目的是提高數(shù)據(jù)質(zhì)量,為后續(xù)的分析提供可靠的數(shù)據(jù)基礎(chǔ)19、在數(shù)據(jù)分析的過(guò)程中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶(hù)信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。為了獲得高質(zhì)量的數(shù)據(jù)用于后續(xù)分析,以下哪種數(shù)據(jù)清洗方法是首先應(yīng)該考慮的?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用均值或中位數(shù)填充缺失值C.通過(guò)數(shù)據(jù)驗(yàn)證規(guī)則修正錯(cuò)誤數(shù)據(jù)D.利用機(jī)器學(xué)習(xí)算法預(yù)測(cè)缺失值20、在對(duì)一家制造業(yè)企業(yè)的生產(chǎn)數(shù)據(jù)進(jìn)行分析,例如原材料采購(gòu)、生產(chǎn)流程、產(chǎn)品質(zhì)量等,以?xún)?yōu)化生產(chǎn)過(guò)程和降低成本。以下哪種數(shù)據(jù)分析工具可能最適合處理大規(guī)模的工業(yè)數(shù)據(jù)?()A.ExcelB.PythonC.SPSSD.SQL二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)闡述數(shù)據(jù)分析中的特征選擇中的Wrapper方法和Filter方法的區(qū)別和適用場(chǎng)景,并舉例說(shuō)明在實(shí)際項(xiàng)目中的應(yīng)用。2、(本題5分)解釋數(shù)據(jù)倉(cāng)庫(kù)中的索引優(yōu)化策略,說(shuō)明如何選擇合適的索引來(lái)提高數(shù)據(jù)查詢(xún)性能,并舉例說(shuō)明。3、(本題5分)在處理能源數(shù)據(jù)時(shí),常用的數(shù)據(jù)分析方法和技術(shù)有哪些?解釋能源消耗預(yù)測(cè)、智能電網(wǎng)優(yōu)化等概念,并舉例說(shuō)明應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某健身俱樂(lè)部收集了會(huì)員的健身項(xiàng)目選擇、鍛煉頻率、身體指標(biāo)等數(shù)據(jù)。研究怎樣根據(jù)這些數(shù)據(jù)為會(huì)員提供個(gè)性化的健身方案。2、(本題5分)某在線教育平臺(tái)的藝術(shù)培訓(xùn)類(lèi)目保存了學(xué)生數(shù)據(jù),包括課程類(lèi)型、學(xué)習(xí)進(jìn)度、作業(yè)完成質(zhì)量、教師評(píng)價(jià)等。分析課程類(lèi)型與學(xué)習(xí)進(jìn)度和作業(yè)完成質(zhì)量的關(guān)系。3、(本題5分)某鮮花電商平臺(tái)收集了鮮花銷(xiāo)售數(shù)據(jù)、節(jié)日需求、配送區(qū)域等。優(yōu)化鮮花采購(gòu)和配送策略,應(yīng)對(duì)節(jié)日高峰需求。4、(本題5分)某視頻網(wǎng)站的紀(jì)錄片類(lèi)目擁有用戶(hù)觀看數(shù)據(jù),如紀(jì)錄片主題、觀看時(shí)長(zhǎng)、評(píng)論熱度、分享意愿等。分析紀(jì)錄片主題與觀看時(shí)長(zhǎng)和評(píng)論熱度、分享意愿的相關(guān)性。5、(本題5分)一家運(yùn)動(dòng)品牌的籃球裝備銷(xiāo)售數(shù)據(jù)涵蓋產(chǎn)品款式、價(jià)格、銷(xiāo)售地區(qū)、賽事活動(dòng)等。研究不同銷(xiāo)售地區(qū)在賽事活動(dòng)期間對(duì)籃球裝
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度路面施工環(huán)境保護(hù)合同范本4篇
- 二零二五版跨境電商智能物流系統(tǒng)租賃合同3篇
- 二零二五年度材料買(mǎi)賣(mài)合同范本:石油化工材料購(gòu)銷(xiāo)合作協(xié)議書(shū)2篇
- 二零二五年度版權(quán)合同管理崗位職責(zé)解析3篇
- 年度全熱風(fēng)載流焊機(jī)戰(zhàn)略市場(chǎng)規(guī)劃報(bào)告
- 二零二五版導(dǎo)游人員國(guó)際交流聘用合同3篇
- 2025年度園林植物病蟲(chóng)害防治勞務(wù)合同4篇
- 2024版建筑工程施工安全控制合同書(shū)一
- 二零二五年度搬家運(yùn)輸貨物貨物包裝材料供應(yīng)合同3篇
- 二零二五年個(gè)人商業(yè)房產(chǎn)抵押擔(dān)保合同樣本3篇
- GB/T 14864-2013實(shí)心聚乙烯絕緣柔軟射頻電纜
- 品牌策劃與推廣-項(xiàng)目5-品牌推廣課件
- 信息學(xué)奧賽-計(jì)算機(jī)基礎(chǔ)知識(shí)(完整版)資料
- 發(fā)煙硫酸(CAS:8014-95-7)理化性質(zhì)及危險(xiǎn)特性表
- 數(shù)字信號(hào)處理(課件)
- 公路自然災(zāi)害防治對(duì)策課件
- 信息簡(jiǎn)報(bào)通用模板
- 火災(zāi)報(bào)警應(yīng)急處置程序流程圖
- 耳鳴中醫(yī)臨床路徑
- 安徽身份證號(hào)碼前6位
- 分子生物學(xué)在動(dòng)物遺傳育種方面的應(yīng)用
評(píng)論
0/150
提交評(píng)論