![基于圖的人工智能基準(zhǔn)測試框架 A Framework for Benchmarking Graph-Based Artificial Intelligence_第1頁](http://file4.renrendoc.com/view15/M02/23/36/wKhkGWeeKZWAF_QxAAFtGpV2N5M163.jpg)
![基于圖的人工智能基準(zhǔn)測試框架 A Framework for Benchmarking Graph-Based Artificial Intelligence_第2頁](http://file4.renrendoc.com/view15/M02/23/36/wKhkGWeeKZWAF_QxAAFtGpV2N5M1632.jpg)
![基于圖的人工智能基準(zhǔn)測試框架 A Framework for Benchmarking Graph-Based Artificial Intelligence_第3頁](http://file4.renrendoc.com/view15/M02/23/36/wKhkGWeeKZWAF_QxAAFtGpV2N5M1633.jpg)
![基于圖的人工智能基準(zhǔn)測試框架 A Framework for Benchmarking Graph-Based Artificial Intelligence_第4頁](http://file4.renrendoc.com/view15/M02/23/36/wKhkGWeeKZWAF_QxAAFtGpV2N5M1634.jpg)
![基于圖的人工智能基準(zhǔn)測試框架 A Framework for Benchmarking Graph-Based Artificial Intelligence_第5頁](http://file4.renrendoc.com/view15/M02/23/36/wKhkGWeeKZWAF_QxAAFtGpV2N5M1635.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ABSTRACT
TitleofThesis:AFRAMEWORKFORBENCHMARKING
GRAPH-BASEDARTIFICIALINTELLIGENCE
KentDanielO’SullivanMasterofScience,2024
ThesisDirectedby:ProfessorWilliamRegli
DepartmentofComputerScience
Graph-basedArtificialIntelligence(GraphAI)encompassesAIproblemsformulatedusinggraphs,operatingongraphs,orrelyingongraphstructuresforlearning.ContemporaryArtificialIntelligence(AI)researchexploreshowstructuredknowledgefromgraphscanenhanceexistingapproachestomeettherealworld’sdemandsfortransparency,explainability,andperformance.
CharacterizingGraphAIperformanceischallengingbecausedifferentcombinationsofgraphabstractions,representations,algorithms,andhardwareaccelerationtechniquescantriggerun-predictablechangesinefficiency.AlthoughbenchmarksenabletestingdifferentGraphAIim-plementations,mostcannotcurrentlycapturethecomplexinteractionbetweeneffectivenessandefficiency,especiallyacrossdynamicandstructuredknowledgegraphs.
Thisworkproposesanempirical‘grey-box’approachtoGraphAIbenchmarking,providingamethodthatenablesexperimentallytradingbetweeneffectivenessandefficiencyacrossdiffer-entcombinationsofgraphabstractions,representations,algorithms,andhardwareaccelerators.AsystematicliteraturereviewyieldsataxonomyofGraphAItasksandacollectionofintelligence
andsecurityproblemsthatinteractwithGraphAI.Thetaxonomyandproblemsurveyguidethedevelopmentofaframeworkthatfusesempiricalcomputersciencewithconstrainttheoryinanapproachtobenchmarkingthatdoesnotrequireinvasiveworkloadanalysesorcodeinstrumen-tation.
Weformalizeamethodologyfordevelopingproblem-centricGraphAIbenchmarksand
developatooltocreategraphsfromOpenStreetMapsdatatofillagapinreal-worldmesh
graphdatasetsrequiredforbenchmarkinputs.Finally,thisworkprovidesacompletedbench-
markforthePopulationSegmentationIntelligenceandSecurityproblemdevelopedusingthe
GraphAIbenchmarkproblemdevelopmentmethodology.Itprovidesexperimentalresultsthat
validatetheutilityoftheGraphAIbenchmarkframeworkforevaluatingif,how,andwhenGraphAIac-celerationshouldbeappliedtothepopulationsegmentationproblem.
AFRAMEWORKFORBENCHMARKINGGRAPH-BASEDARTIFICIALINTELLIGENCE
by
KentDanielO’Sullivan
ThesissubmittedtotheFacultyoftheGraduateSchoolofthe
UniversityofMaryland,CollegeParkinpartialfulfillment
oftherequirementsforthedegreeof
MasterofScience2024
AdvisoryCommittee:
WilliamRegli,Chair/AdvisorMohammadHajiaghayi
BrianPierce
LaxmanDhulipala
?Copyrightby
KentO’Sullivan
2024
ii
Acknowledgments
Dr.BillRegli,forhisguidanceasmyadvisorandsupportthroughoutmytimeattheUniversityofMaryland.
MyThesisCommittee:Dr.MohammadHajiaghayi,Dr.BrianPierce,andDr.LaxmanDhulipalafortheirtimeandconstructivefeedback.
Nicole,forherextensiveeditingsupport,unwaveringwillingnesstocollaborateonresearch,andinsistenceonpushingmetopublishmyworkoverthelasttwoyears.
Nate,Sam,andTaylor,forthemoraleourstudygroupprovided,andNandiniforourchatsaboutGraphNeuralNetworks.
TheAustralian-AmericanFulbrightCommission,theKinghornFoundation,andtheUniversityofMarylandfortheirscholarshipswhichgavemethemeanstoundertakethiscourseofstudy.
TheAustralianArmy,forsupportingmydesiretostudycomputersciencefortwoyears.
TheAppliedResearchLaboratoryforIntelligenceandSecurityforsupportingmyresearch.
Mostimportantly,tomypartnerMaryforsupportingmeinmovingtotheothersideoftheworldtostudy,pausinghergoalswhileIpursuedmine,andmakingsurethatIsawmoreoftheUnitedStatesthanjusttheinsideoftheComputerScienceDepartment.
iii
TableofContents
Acknowledgements
ii
TableofContents
iii
ListofTables
vi
ListofFigures
vii
ListofAbbreviations
ix
Chapter1:Introduction
1
1.1Motivation
1
1.2ProblemandBackground
2
1.3DevelopingtheGraphAIBenchmarkFrameworkandGraphAIBenchmarkMethod-
ology
5
1.4ApplyingOurGraphAIBenchmarkFramework
8
1.5ApplicationsandImpactoftheGraphAIBenchmarkingFramework
9
1.6ThesisOutline
10
Chapter2:Preliminaries
12
2.1Graph-BasedArtificialIntelligence
12
2.1.1ATaxonomyofGraphAI
13
2.1.2Real-WorldUsesofGraphAI
15
2.2GraphDefinitions
15
2.2.1GraphComponents
16
2.2.2GraphCharacteristics
17
2.2.3GraphTypes
19
2.3GraphTopology
20
2.3.1Real-WorldGraphs
20
2.3.2SyntheticGraphs
21
2.3.3Summary
22
2.4GraphRepresentations
23
2.4.1GraphStorage
23
2.4.2GraphAbstractions
27
2.5GraphPrimitiveOperations
29
2.6ArchitecturalConstraintsforGraphProcessing:Locality
30
iv
2.6.1Locality
31
2.7Summary:OptimizingandEvaluatingGraphAIisaHardProblem
34
Chapter3:LiteratureReview
35
3.1Benchmarking
35
3.1.1Competitive‘Black-Box’Benchmarks
36
3.1.2‘White-Box’Benchmarks
37
3.1.3ConstrainedBenchmarks
38
3.1.4Summary
38
3.2BenchmarkingGraphAI
40
3.2.1TaskCoverage
42
3.2.2DatasetCoverage
46
3.2.3MetricCoverage
49
3.3GraphAIBottlenecks
51
3.3.1MemoryBottlenecks
51
3.3.2ComputationBottlenecks
52
3.3.3CommunicationBottlenecks
53
3.4Summary:GraphAIbenchmarkingrequiresa‘grey-box’approach
53
Chapter4:TheGraphArtificialIntelligenceBenchmarkingFramework
55
4.1Motivation
55
4.2BenchmarkMechanics
56
4.2.1BenchmarkSpecification
57
4.2.2SystemUnderTest
58
4.2.3Grey-BoxEvaluation
59
4.3GraphAIBenchmarkDesign
60
4.3.1EmpiricalBenchmarkDesign
60
4.3.2DesignusingtheTheoryofConstraints
63
4.4OurGraphAIBenchmarkFramework
63
4.5Summary:A‘Grey-Box’GraphAIBenchmarkFramework
68
Chapter5:ThePopulationSegmentationProblem
69
5.1IdentifyandCharacterizethePopulationSegmentationProblem
69
5.1.1Definition
69
5.1.2Tasks
70
5.1.3Datasets
71
5.1.4Outputs
72
5.2IdentifyandCharacterizePhenomenaofInterest
73
5.2.1Efficiency
73
5.2.2Effectiveness
73
5.2.3Cost
74
5.2.4Outputs
75
5.3ConductExploratoryExperimentation
75
5.3.1DatasetsObservations
77
5.3.2ImplementationObservations
77
v
5.3.3Outputs
79
5.4DevelopHypotheses
80
5.4.1StimulatingHardware
81
5.4.2StimulatingRepresentations
82
5.4.3StimulatingCommunityDetection(CD)Implementations
83
5.4.4SelectingHypotheses
84
5.5ConstructtheInvestigationApparatus
85
5.5.1ObservationApparatus
86
5.5.2Datasets
86
5.5.3Tasks
91
5.5.4Metrics
92
5.5.5Limitations
92
5.5.6Outputs
93
5.6AnalyzeResults,DevelopTheoreticExplanationandIterate
94
5.6.1ExperimentSetup
94
5.6.2ExperimentResults
96
5.7Discussion
101
Chapter6:Conclusion
104
6.1FutureWork
104
6.2Conclusion
106
Bibliography
109
vi
ListofTables
2.1TheGraphAItaxonomygroupsGraphAItasksintoGraphAIproblemsandbroader
GraphAIproblemareas
14
2.2AsurveyofGraphAIproblemsintheIntelligenceandSecurity(I&S)domain
16
3.1CoverageofGraphAItasksbyexistingbenchmarksuitesandworkloadanalyses
41
3.2CoverageofGraphAIdatasetsbyexistingbenchmarksuitesandworkloadanalyses.
45
3.3CoverageofGraphAImetricsbyexistingbenchmarksuitesandworkloadanalyses.
48
4.1Summaryofdependenciesbetweenbenchmarkcomponentsandevaluationmetrics.
60
4.2Summaryofexpectedmetricbehaviorswhenabenchmarkcomponentiscon-
strained
66
5.1Exampleproblem-centrictasksforthepopulationsegmentationbenchmark
71
5.2Surveyofcomputationalapproachestopopulationsegmentation,showingeffi-
ciencyandeffectivenessbottlenecks
76
5.3Summaryofdatasetsforthepopulationsegmentationproblemshowingsize,
summarystatisticsanddomain
90
5.4Summaryofexperimentsforthepopulationsegmentationbenchmark.EachSUT
completesthesametasksonthesamedata
96
vii
ListofFigures
1.1TheGraphAItaxonomyconsistsofsixGraphAIproblemareas.Indicativetasks
foreachproblemareaareingrey
2
1.2GraphAIchallengesareahierarchyofdependenciesfoundationallylimitedby
graphprocessing
5
1.3TheGraphAIbenchmarkframeworktakesagrey-boxapproachtobenchmarking,
designinginputstostimulateobservablechangestooutputstoinfersystemand
implementationdetail
6
1.4TheGraphAIbenchmarkdesignmethodologyforcreatingproblem-centricbench-
marks,showinghowmethodologyoutputsmaptobenchmarkcomponents
6
1.5Thehigh-levelviewoftheGraphAIbenchmarkingframework.SUTsinteract
withthebenchmarkthroughanobservationapparatusAPI
9
2.1Examplegraphwithfivenodesandfiveedges
23
2.2AdjacencyListforgraphinFigure2.1.Eachlinerepresentsavertex,withthe
firstinthelistbeingthesourceandeachsubsequentvertexadestinationofanedge.
24
2.3AdjacencyMatrixforgraphinFigure2.1isa|V|×|V|matrixwhereavalueof
1indicatesanedgeand0isnoedge
25
2.4IncidenceMatrixforthegraphinFigure2.1isa|E|×|V|matrixwherea-1is
thesourcenodeand1isthedestinationofagivenedge
26
2.5TheCompressedSparseRow(CSR)formatusesthreeliststorepresentthegraph
inFigure2.1
27
2.6Asimplifiedrepresentationofadirectedgraphinvertexorderwhereeachvertex
isaddedtomemorycreationorder(here,alphabetically).Edgesarenotshown
32
2.7Asimplifiedrepresentationofadirectedgraphinvertexorderwhereeachvertex
isaddedtomemorycreationorderwithattributesstoredseparately.Pointersfrom
topologytoattributesarenotshownforclaritybutcorrespondtothefirstletterof
theattribute
33
3.1Thebasiccomponentsofagenericbenchmarksystem
39
4.1ThecomponentsoftheGraphAIbenchmarkingframework
57
4.2Hooker’smethodologyforanempiricalscienceofalgorithms[1,2]
62
4.3ThecomponentsoftheGraphAIbenchmarkingframework
67
5.1ThecoverageofstaticCDdatasetsshowingtheexpecteddifficultyofeffective-
nessversusefficiency.Redcolorsaremore‘difficult’interactions
91
5.2Theobservationapparatusforthepopulationsegmentationbenchmark
93
viii
5.3TheexperimentscomparethreeSUT,eachwithastaticanditerativeimplemen-
tationoftheLouvainAlgorithm[3]
95
5.4TheGPUimplementationisdrasticallyfasterthantheBaselineandXeonSUT
forthesametasks
97
5.5TheGPUSUTexperiencesadipinNMIforScale-Freedatasetswhileeffective-
nessremainsconstantacrossbothCPU-basedSUTs
97
5.6PorportionofatotalexperimentshowsGPUspendmoretimeonETLrelativeto
totalExecutionTime(ExTime)
99
5.7Theunderlyinghardwareimpactstheperformanceofiterativealgorithms,with
onlytheXeonCPUSUTshowingmonotonicimprovementthatallowstrading
effectivenessforefficiency
100
ix
ListofAbbreviations
A*
A-StarSearch
AI
ArtificialIntelligence
API
ApplicationProgrammingInterface
ARLIS
AppliedResearchLaboratoryforIntelligenceandSecurity
ASIC
ApplicationSpecificIntegratedCircuit
BFS
BreadthFirstSearch
BL
BatchLatency
BR
BatchRate
BS
BenchmarkServer
CD
CommunityDetection
CIMIC
Civil-MilitaryCoorperation
COCO
CommonObjectsinCOntext
CombBLAS
CombinatorialBasicLinearAlgebraSubprograms
CPU
CentralProcessingUnit
CRUD
CreateReadUpdateDelete
CSC
CompressedSparseColumn
CSR
CompressedSparseRow
CUDA
ComputeUniformDeviceArchitecture
CV
ComputerVision
DFS
DepthFirstSearch
ETL
ExtractTransformLoad
ETLTime
ExtractTransform&LoadTime
ExTime
ExecutionTime
GA
GraphAbstraction
GAP
GraphAlgorithmPlatform
GAS
GatherApplyScatter
GBBS
Graph-BasedBenchmarkSuite
GCC
GlobalClusteringCoefficient
GDB
GraphDatabase
GHA
GraphHardwareAccelerator
GM
GraphMining
GNN
GraphNeuralNetwork
GC
GraphClustering
GP
GraphPrediction
GPU
GraphicsProcessingUnit
GPS
GraphProblemSolving
x
GRGraphReasoning
GraphBLASGraphBasicLinearAlgebraSubprogramsGTGraphTransparency
HPCHighPerformanceComputingI&SIntelligenceandSecurity
IOInformationOperations
IPBIntelligencePreperationoftheBattlespace
LCCLocalClusteringCoefficient
LFRLancichinetti,Fortunato,RadicciLLMLargeLanguageModel
MLMachineLearning
NDRNetworkDataRepository
NMINormalizedMutualInformationNLPNaturalLanguageProcessing
MSTMinimumSpanningTreeOSMOpenStreetMaps
RAMRandomAccessMemory
RAGRetrievalAugmentedGenerationRMATRandomMatrix
SCCStronglyConnectedComponentsSLRSystematicLiteratureReview
SLNDCStanfordLargeNetworkDatasetCollectionSNAPStanfordNetworkAnalysisProject
SOTAStateOfTheArt
SSSPSingleSourceShortestPath
SUTSystemUnderTest
SWaPSizeWeightandPowerTCTriangleCounting
TEPSTraversedEdgesperSecondTxTimeTransferTime
UCSUniformCostSearch
VQAVisualQuestionAnswering
WCCWeaklyConnectedComponents
1
Chapter1
Introduction
1.1Motivation
Graphsareexpressivedatastructuresthatencodeevidenceasverticesandcontextualre-lationshipsbetweenevidenceasedges.Aspowerfulabstractionsoftherealworld,graphslendthemselveswelltolearningandreasoningtasks,whichencompassanemergingareaofworkwetermGraph-BasedArtificialIntelligence(GraphAI).WetaxonomizeGraphAIwithintheex-istingAIlandscape,coveringthewell-knownareasofGraphPrediction(GP)[
4
–
6
]andGraphMining(GM)[
7
]andextendingthosetoincludeGraphProblemSolving(GPS),GraphRea-soning(GR),GraphAbstraction(GA),andGraphTransparency(GT),whicharedetailedinFigure
1.1.
Acrosstheseareas,GraphAIincludestaskslikestructuralanalysis,inferenceovergraphs,andapplicationsofgraphstoAIproblemslikemodeltransparency,explainability,andinterpretability.
AlthoughgraphsareexpressiveandbroadlyapplicabletovariousAIproblems,theyimposeasignificantcomputationalburdenonsystemsthatoperateGraphAI.Intelligentalgorithmsthatoperateongraphsfrequentlyhavequadraticorworsecomplexity,whichlimitstheirusabilityonreal-worldgraphscontainingbillionsortrillionsofvertices.Moderngeneral-purposeprocessorsusecachingandprefetchingtospeedupcomputationoverlargenon-graphinputs.ThechallengewithgraphsisthatmostGraphAIalgorithmsexploitthegraph’sstructureinprocessing,whichrequiresaccesstothedataintopologicalorder.Thatrequirementconflictswithgraphstorage,whichistypicallychronologicalintheorderthatverticesarecreated,meaningtopologicallyclose
2
GraphMining
Q
Graphproblemsolving
Graph
Abstraction
Graph
prediction
Graph
Transparency
Graphsearch
common-sense
Graph
Embedding
GraphNeuralNetworks
Neuro-symbolicAl
Alplanning
communityDetection
ontologicaInference
KGcompletion
RepresentationLearning
KGInference
Graphprediction
post-HOC
Explanation
criticalpath
Graph
Generation
GraphA
Graph
Reasoning
GraphMatching
RAG
InfluenceMapping
Figure1.1:TheGraphAItaxonomyconsistsofsixGraphAIproblemareas.Indicativetasksfor
eachproblemareaareingrey.
verticesarenotnecessarilyproximalinmemory.Withoutcachingbenefits,GraphAIalgorithmsrelyondataretrievedfrommainmemory,whichcausesmemorylatencyandbandwidthbottle-necksthatlimitscalabilityandpreventGraphAIfrombeingdeployedonreal-worldproblemsthatmightotherwisebenefitfromit.
1.2ProblemandBackground
CommonapproachestospeedingupGraphAIprocessingtypicallyusehardware,likespe-cializedacceleratorsordistributedprocessing;representation,likecustomdatastructuresorab-stractionmodels;oralgorithms,likeparallelorapproximatemethods.Theseapproachesarein-terdependent,meaningdecisionsaboutoptimizinghardwarecanlimitchoicesaboutparallelismorprogrammingmodels,whichmakesitdifficulttodeterminetheoptimalconfigurationfora
3
givencollectionofproblems.
Thisthesisaimstodetermineif,how,andwhentospeedupproblem-solvingonGraphAIgivenasetofoperatingconstraints.Specifically,weconsiderhowtoeffectivelycombinerepresenta-tions,hardwareaccelerators,andalgorithmstospeedupGraphAIandunderwhatconditionsaspecificcombinationisappropriateforausecasegivensomeconstraintsonasolution’seffi-ciency,effectiveness,andcost.Priorapproachestoidentifyingif,how,andwhentoaccelerateaGraphAIsystemrelyongenericcompetitivebenchmarksorinvasiveworkloadanalysis,bothofwhichprovideincompleteviewsofGraphAIperformanceacrossmultiplepossiblesystemcon-figurations.
Benchmarkingisaprocessbywhichsystemsorcomponentsarecomparedaccordingtosomecriteria,whichisusedtodeterminetheirrelativeperformance[
8
].MostbenchmarksforGraphAItakea‘black-box’approachtocompetingsystemsbasedonefficiencyoreffectivenessmetricsbutrarelyboth,andnevertheirinteractions.Benchmarkstypicallyfocusonevaluatingisolatedkernel-leveltasksratherthanmorecomplicatedreal-worldproblemsandtypicallyuseasmallselectionofdatasetsthatdonotcoverthebreadthofexpectedinputsizesandshapes.Ex-istingbenchmarksalsolacksupportfordynamicgraphprocessingapproaches,especiallycom-paringdynamicandstaticapproachesunderthesameevaluationframework.
Alternatively,workloadanalysesare‘white-box’approachesthatanalyzetheinternalstateofasystemwhilecompletingaworkloadtoidentifybottlenecks.AlthoughworkloadanalysesyielddetailedinformationabouthowtoacceleratetheSystemUnderTest(SUT),theyrequireaccesstothesystemforprofilingandaccesstothecodeforinstrumentation.Theinvasiveconfig-urationrequirementsmeanworkloadanalysescannotbescaledforgeneral-purposecomparisons,makingthemunsuitableforbroadapplicationtoGraphAI.
4
Inadditiontothechoiceintheanalyticmethod,ahierarchyofotherchallengesunderlaythebroaderproblemofdecidingif,how,andwhentoimproveGraphAIundersomeconstraints,whichweoutlineinFigure
1.2.
Takingauser’stop-downperspectiveofthechallengehierarchy,theusermustfirstdecidethedegreetowhicheffectivenessshouldbetradedforefficiencyorcost.Theneedtomakethistrade-offstemsfromthereal-worldconstraintsimposedonGraphAIsys-tems,suchasarequirementtogeneratearecurringsolutionatapacemorefrequentthantheal-gorithm’sruntimeallows.Further,mostgraphhardwareacceleratorsarespecializedApplicationSpecificIntegratedCircuit(ASIC)andareoptimizedtospeedupaspecificalgorithm,representa-tion,abstraction,andprogrammingmodel.TheproblemwithASICsisthatagivenGraphAIsys-temmayneedtosupportmanygraphtasks,soanacceleratorthatoptimizestheperformanceofasingleGraphAItaskmaynotgarnerabroadenoughimprovementinallGraphAItaskstojustifyitscost.Thesereal-worldchallengesandtrade-offsareparticularlypronouncedforGraphAIbe-causeoftheinherentnatureofgraphprocessingthatunderliesGraphAIproblems.Graphsofdifferentshapesandsizesunpredictablyinfluencealgorithmiccomplexity,includingexacerbat-ingirregularmemoryaccessesandcomputationpatternsthatunderminespatialandtemporallocality.Whencombinedwiththedatadependence,thelackofstandardgraphrepresentationmethods,abstractionmodels,orasetofprimitiveoperationsfurtherpreventsaunityofefforttowardacceleratinggraphprocessingacrossallgraphtasks.
5
Evaluation:
'Racing'systemsorinvasive
analysis?
user:
Realworld:
GraphAl
Graph:
If,HOW,when&constraints?
EffectivenessorEfficiency?
Figure1.2:GraphAIchallengesareahierarchyofdependenciesfoundationallylimitedbygraphprocessing.
1.3DevelopingtheGraphAIBenchmarkFrameworkandGraphAIBenchmarkMethod-
ology.
WeaddresstheseGraphAIissuesbycontributingourGraphAIbenchmarkframework,showninFigure
1.5.
ThebenchmarkevaluatestheperformanceofaSUTusinganInput/OutputobservationapparatustoprovidetheSUTwithproblem-centrictasksanddata,recordthetimetosolution,andverifythecorrectnessofananswer.EachGraphAIbenchmarkintheframeworkisindependent,andwecontributeanempiricalmethodologyforconstructingaproblem-centric,accelerator-agnostic,‘grey-box’GraphAIbenchmarkthatcanevaluateboththeefficiencyandtheeffectivenessofdynamicandstaticGraphAIimplementationsandsystems.
By‘grey-box’,wemeananapproachtobenchmarkingbetweenthefullyopaqueblack-box
6
GREYBOX
-Inputsknown&designedtostimulatebottlenecks.
-systemdetailunknown.-Implementationunknown.
-outputsevaluatedand
analyzedtoinfersystemandimplementationdetail.
WHITEBOX-Inputsknown.
-systemdetailknownandinstrumented.
-Implementationknownandinstrumented.
-outputsrarelyevaluated.
Figure1.3:TheGraphAIbenchmarkframeworktakesagrey-boxapproachtobenchmarking,
designinginputstostimulateobservablechangestooutputstoinfersystemandimplementationdetail.
Datasets
Tasks
Metrics
observationApparatus
Hardware
softwarestack
Implementation
Figure1.4:TheGraphAIbenchmarkdesignmethodologyforcreatingproblem-centricbench-
marks,showinghowmethodologyoutputsmaptobenchmarkcomponents.
7
viewthatnaivelyracessystemsagainsteachotherandtheinvasivewhite-boxviewthatpainstak-inglymonitorstheinternalstateofasystem(Figure
1.3
).Inimplementingagrey-boxview,weuseourGraphAIbenchmarkdesignmethodologytoidentifyexpectedsystemandimplementa-tionbottlenecksanddesignadversarialinputsthatweexpecttostimulatethosebottlenecks.Byevaluatingtheoutputandanalyzingtheefficiencyandeffectivenessacrossdatasets,wecaninferwhichexpectedbottleneckwilllikelycauseanobservedoutputwithoutinvasiveinstrumentation.
Thisapproachofmanipulatinginputstotriggerbottlenecksobservableintheoutputsallowsustoturnoneofthemostsignificantproblemsingraphprocessing(datadependence)intoavaluableasset.
Weemployaformalmethod(Figure
1.4
)thatemphasizesthetransparency,verifiability,andreproducibilityofbenchmarkproblems.Atitscore,themethodconstructsadetailedmap-pingofthecharacteristicsoftheinputgraphstotheoutputsofaGraphAIsystemanddetailshowtointerpretthoseoutputsinthecontextofknownandsuspectedbottlenecksinhardware,representation,andimplementationdecisions.Themethodcomprisessixstepsthatgeneratethecomponentsofthebenchmarkspecificationandtheobservationapparatus.
Theprocessbeginsbyidentifyingausecasetogroundtheprobleminreal-worlddatasetsandcurrentapproaches.Amoredetailedanalysisoftheproblemyieldsinformationaboutthesizeandshapeofthedataandformallyspecifiestheeverydaytasksassociatedwiththatprob-leminnaturallanguage.Formalizingthestudy’sphenomenaincludesidentifyingwhatspecificinteractionsofdatasetandtaskar
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度醫(yī)療設(shè)備購置貸款合同(含設(shè)備租賃擔(dān)保)
- 2025年度大型設(shè)備搬遷與運(yùn)輸承攬合同模板
- 2025年度公章授權(quán)委托書模板版權(quán)保護(hù)服務(wù)合同
- 2025年度智能公寓管理服務(wù)合同范本
- 2025年度體育賽事贊助合同規(guī)范文本
- 2025年上海二手房購房合同標(biāo)準(zhǔn)版本(2篇)
- 2025年度新能源發(fā)電項(xiàng)目合同續(xù)約書
- 2025年度文化產(chǎn)業(yè)投資合同知識(shí)產(chǎn)權(quán)共享補(bǔ)充協(xié)議
- 2025年度城市更新工程項(xiàng)目管理人員聘用合同
- 2025年度教師信息技術(shù)培訓(xùn)合同匯編
- IEC-62368-1-差異分享解讀
- 如何當(dāng)好學(xué)校的中層干部
- SWITCH塞爾達(dá)傳說曠野之息-1.6金手指127項(xiàng)修改使用說明教程
- 2022-2023學(xué)年廣東省佛山市順德區(qū)高三(下)模擬英語試卷
- 節(jié)后復(fù)工培訓(xùn)內(nèi)容五篇
- GB/T 33322-2016橡膠增塑劑芳香基礦物油
- GA 1051-2013槍支彈藥專用保險(xiǎn)柜
- 某水毀公路維修工程施工方案
- 家庭病房工作制度和人員職責(zé)
- 建設(shè)工程監(jiān)理合同示范文本GF-2018-0202
- 2022質(zhì)檢年終工作總結(jié)5篇
評(píng)論
0/150
提交評(píng)論